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1 Interdisciplinary Center for Scientific Computing, University of Heidelberg, Speyererstr 6, 69115 Heidelberg, Germany

2 Department of Theoretical and Computational Physics, Babeş-Bolyai University,
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Abstract: Fracture patterns resulting from point-like impact acting perpendicularly on the plane of a commercial soda-

lime glass plate is modeled by a spring-block system. The characteristic patterns consist of crack lines that
are spreading radially from the impact point and concentric arcs intersecting these radial lines. Experimental

results suggest that the number of radial crack lines is scaling linearly with the energy dissipated during the

crack formation process. The elaborated spring-block model reproduces with success the observed fracture
patterns and scaling law.
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1. Introduction

Glass is one of the oldest and most commonly used materials in our everyday life and engineering [1]. For different

practical applications diverse geometrical forms are needed, but the most widespread shapes are in the form of

thin plates. Unfortunately for many engineering applications soda-lime glass plates are quite brittle materials,

rather sensitive to shocks acting perpendicularly on them [2]. In laymen terms this means they can easily break.

When a projectile with enough momentum hits a glass-plate, characteristic fracture patterns are generated (see

Fig.1). The crack structure which is observed under such loading consist of a few concentric circles or arcs and

many radial crack lines initiating from the impact point. The number of radially spreading crack lines depends

on the strength of the impact, and the number of concentric circle shaped cracks depends both on the loading,

thickness of the glass plate and fixing conditions for the plate. By varying these parameters the cracks patterns

can slightly change, although the two characteristic crack-types (circle and radial) are clearly visible. In Figure 2
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we present a small collection of crack patterns obtained by a point-like impact. Understanding such fracture or

fragmentation patterns and modeling them is a challenge for modern computational material science and physics

[3–9].

Figure 1. Characteristic fracture pattern on a glass plate produced by a localized perpendicular shock. The radial and arc-like
crack lines are nicely observable.

Figure 2. A collection of crack patterns induced by a localized perpendicular impact on glass plates.

Fracture and elasticity of soda-lime glass has been studied and modeled for a long time [10–16]. Recently it

has been experimentally proven that fracture in glass is brittle [17]. Engineering aspects (for a recent review

see [18, 19]) were studied by indentation experiments quite early, starting with the pioneering work of Auerbach

[20]. Many simple and less sophisticated kitchen-type experiments were made by statistical physicists aiming to

understand the pattern formation phenomenon and collective behavior of crack-lines for various type of uniformly

distributed loading [21–23]. Simple models and theoretical arguments were considered already in the early 90’s

for describing the obtained structures [24–27]. The present paper intends also to contribute in such sense. Our
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aim here is to show, that a simple spring-block type model for fracture and fragmentation is appropriate for

qualitatively describing the observed patterns and can also successfully reproduce some quantitative scaling laws

revealed in experiments.

2. Spring-block models

A simple mechanical system of blocks interconnected under various topologies by springs and sliding on a frictional

surface proved to be helpful for approaching many complex phenomena. As a first application of this system,

one should mention Burridge and Knopoff [28], who first used a dragged spring-block-chain to successfully ex-

plain the Guttenberg-Richter [29] scaling-law for the earthquake magnitudes. As a recognition of their results,

nowadays spring-block models are also labeled as Burridge-Knopoff type models. The model was generalized in

two dimension by Olami, Feder and Christensen [30]. Afterwards, due to the spectacular evolution of computers

and computer simulation methods, the spring-block model proved to be useful in describing other phenomena as

well. The model is especially appropriate for those problems where avalanche-like dynamics or pattern formation

is present. Known examples in this respect are the Portevin-Le Chatelier phenomena [31], the Barkhausen noise

[32], formation of traffic jams [33], structures formed by the capillary self-organization of nano-particle systems

[34, 35] or fragmentation and fracture of various materials under different loading [36].

The fascinating polygonal patterns obtained in dried mud are familiar to everyone. Such patterns hide also an

interesting scaling law, which connects the average fragment area with the layer thickness. One success of the

spring-block-type models was the elegant reproduction of these patterns and scaling law. In this approach the

grains of the material are modeled by blocks sliding on a two-dimensional substrate, while the capillarity effect of

drying water which leads to fragmentation is modeled by springs interconnecting the blocks [37, 38]. Initially, the

blocks are placed on the sites of an abstract triangular lattice and first neighbors are interconnected by springs.

A small amount of stochasticity is introduced by displacing randomly the blocks relative to their original position

on the lattice. The springs are then stressed and a relaxation dynamics is imposed on the system. During this

dynamics: (i) each block will slide to a new equilibrium position when the total force acting on it is greater

than the friction force and (ii) each spring is allowed to break whenever the tension in it exceeds a breaking

threshold. Several layers of springs are considered in order to incorporate the thickness of the material in the

model. Due to the competing effects of the spring tensions and frictional forces, blocks will slide in avalanches

leading finally to the breakage of the springs and thus to fragmentation of the system. Very realistic fracture

lines and fragmentation topologies are obtained. By using this simple spring-block model one could get precious

information about the role of the main controllable physical parameters in the final crack pattern. A similar

spring-block type model was used for explaining the formation of fascinating spiral shaped fracture structures in

drying precipitates [39, 40]. To reproduce these continuously bending crack lines an additional stress front moving

towards the centre of the two-dimensional system was used. This stress front modeled the advancing drying front
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in the fragment, which was believed to be responsible for the formation of the spiral shaped cracks. Motivated

by the successes of the spring-block type models in describing fracture and fragmentation, we adapt this model

for describing crack patterns in glass plates subjected to localized shocks acting perpendicularly to the plate.

3. A model for glass fracture

We will consider a two-dimensional spring-block approach for describing fracture patterns in glass. A first attempt

to use such model for brittle fracture was made by Curtin and Scher in the early 1989 [41]. A natural question that

one can immediately raise is how can crack generation and propagation, which are typically plastic behaviors, be

approached with springs, that are perfectly elastic elements. The answer to this is that beside the elastic spring

forces we consider energy dissipating friction forces and spring breaking events. Our first aim is to make realistic

the spring-block model for glass-like systems by incorporating the following features of glasses: the amorphous

structure, the elastic response to small stresses by a local reorganization and the plasticity in case of high stresses.

In order to match these requirements within the framework of the spring-block models some changes have to be

done relative to the model originally used by us for fracture and fragmentation of granular materials.

The elaborated model is two-dimensional and its main elements are blocks which can move hindered by friction

and springs connecting them. Disk shaped blocks, all with the same radius r0 will model mesoscopic elements

of the glass while the cohesion forces between them are modeled by elastic springs. These springs have all of

them the same spring constant k, and their length is defined as the distance between the centers of the connected

blocks. The spring tension is Fk = k · r for lengths r between 2r0 ≤ r ≤ rmax, where rmax is the breaking

threshold (maximal allowed elongation) of the springs. In the spring force it is also included a hard-core type

repulsion which forbids blocks to interpenetrate each other. This repulsion is described by the repulsive part of

a Lenard-Jones-type potential. The force-profile of the forces acting in the springs is sketched in Figure 3a.

The friction forces acting on the blocks models the pinning forces that are opposing the unrestricted rearrangement

of the mesoscopic elements in a glass sample subjected to stress. Within our spring-block approach the friction

acts between the blocks and the surface. It can equilibrate a net force less than Ffmax. Whenever the total force

Ft(i) acting on a block i exceeds this Ffmax value the block begins to slip with an over-damped motion. This force

profile is borrowed from classical mechanics, where we assumed that the static friction force is able to equilibrate

a net force which is less than the static friction force value. Similar approach has been used with success to model

pinning forces acting on nano-scale objects [34]. The characteristic profile of the friction forces is illustrated in

Figure 3b. In order to incorporate in the model the quasi-disordered nature of glass at mesoscopic level the Ffmax

slipping threshold values are randomly distributed on the surface. For implementing this quenched disorder, we

consider a cellular division of the surface. For the sake of simplicity we construct uniform cells using a square

lattice topology (Figure 4). In each cell a randomly chosen Ffmax threshold force is assigned. In order to achieve

this, we generate uniformly distributed random numbers between two fixed limits: Ff1 and Ff2. The lattice
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constant of this auxiliary cellular structure is chosen to be of the same order of magnitude as the value of r0.

Figure 3. Force profiles for the spring forces (a) and friction forces (b).

The blocks are initially placed on the sites of a triangular lattice. To introduce an isotropy in this symmetric

structure we randomize the initial distribution by displacing the blocks randomly from their original site, and

relaxing the system so that the blocks should not overlap. By this step, a secondary disorder and an isotropy

characteristic for amorphous systems is introduced. Due to the random friction values this equilibrium state will

have internal stresses frozen into the system. We connect now neighboring blocks by considering springs between

those blocks, for which the centers can be connected without intersecting another block and the distance is smaller

than rmax (these conditions will be referred later as the geometric condition). In this way, an initially pre-stressed

and isotropic spring-block network is built.

Figure 4. Construction of the initial isotropically interconnected spring-block network.

The simulation has two main parts.

In the first part of the simulation the initially constructed and pre-stressed spring-block system is relaxed to

an equilibrium configuration where all spring-tensions are less than the breaking threshold (springs with higher

tension are broken), the resulting forces acting on blocks are less than the friction thresholds and the blocks do

5



Spring-block approach for crack patterns in glass

not overlap.

In the second part of the simulation the external shock is applied and the system is relaxed again. The impact is

applied by increasing the spring constants in the system following a reasonable stress profile. Our intention is to

model the fracture of glass-plates due to a point-like perpendicular shocks. A simple exponentially decaying stress

profile was chosen in the form of kextra = k0 · exp(−r/λ), where r is the distance from the impact point, λ is a

characteristic decay distance and k0 is the magnitude of the point-like perturbation. After this additional loading

is applied the system is relaxed again. During this relaxation process cracks are nucleating and propagating in

the system. The time evolution of the systems is recorded and from this data the crack evolution process and the

final crack structure is investigated.

For both parts of the simulation the relaxation process is realized in a similar manner, following the same relaxation

steps. Instead of a time-consuming rigorous classical molecular dynamics simulation we have chosen to follow

a simpler method based on the assumption of an overdamped dynamics of the blocks. The same approach was

used previously in simulating the fragmentation of drying nano-sphere system [34]. Due to the fact that we are

not interested here in the real time-like dynamics, the time length dt for each relaxation step is taken as unity

(dt = 1) and the following moves are done:

1. Reorganization. At the beginning of each relaxation step the spring system is reconstructed by respecting the

geometric condition. By this the isotropy of the system is restored and the elasticity of glass is approximated.

2. Recalculation of forces. The resultant force acting on each block i is computed as: ~Ft(i) =
∑

p dip
~Fk(i, p),

where the sum is over all the other blocks p, and dip is 1 if the blocks are connected by spring and 0

otherwise, and ~Fk(i, p) is the tension in springs connecting blocks i and p.

3. Slipping of the blocks. The total force ~Ft(i) acting on each block i is analyzed. If its magnitude Ft(i) = |~Ft(i)|

is bigger than the Ffmax threshold, the block will slip with an over-damped motion. Over-damped motion

appears when the resistance forces acting on behalf of a continuous medium on a moving body are increasing

sharply with its velocity. Often in such cases a limit velocity is very quickly reached. This limit velocity

depends on the applied force and it is governed by a viscous damping coefficient η. The reciprocal value of

this damping coefficient is called mobility. During an over-damped motion we assume no acceleration, and

consider the velocity proportional with the acting force and mobility. In a time interval dt the position of

the block will change by: d~ri = ~Ft(i)dt/η. The repulsive interaction incorporated in the spring forces forbids

the blocks to slide on each other and the presence of viscous damping eliminates unrealistic oscillations.

The relaxation step consisting of the above presented consecutive moves is repeated until a step is finished

without having any disk slipping event. Since a perfect relaxation is hard to achieve, a very small tolerance level

is considered and it is assumed that the relaxation is completed when the maximal slip in the system is smaller

than this tolerance value.
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Before starting however the simulations first the geometry of the simulated plates has to be fixed. Due to the

rotational symmetric shock profile, we present the final results on a disk-like plate. Nevertheless, for the sake

of computational simplicity and for minimizing edge effects simulations are done on a much larger square-like

domain.

Another crucial point of simulations is to define boundary conditions for the relaxing system. In principle several

types of boundary conditions might be possible to impose, but we will see that the majority of them will have

shortcomings. The problem of boundary conditions in such systems were analyzed in detail in a previous work

considering the capillary self-organization of nanospheres [34].

A natural solution would be to use free boundary condition which can be realized in a simple manner by positioning

initially the blocks inside the simulated area. After connecting the blocks by springs as described earlier, the

blocks on the edges and corners will experience a resultant net force in the direction of the center. In the first

part of the simulation the system would compact unevenly due to this unbalanced net force and therefore a

non-homogeneously pre-stressed system would form. Using thus free boundary conditions is not advisable.

To eliminate the initial non-homogeneous contraction of the system one can consider periodic boundary conditions.

Periodic boundary conditions are however not useful here since it would lead to unrealistic crack lines that are

leaving the system in one side and entering on the other side and thus self-interacting.

The best solution is to use fixed boundary conditions. This can be realized by positioning again the blocks inside

a square and considering a chain of fixed blocks on the chosen perimeter . These fixed blocks are connected

between their neighbors with geometrically allowed springs. The system is stabilized, and the initial construction

of the isotropically pre-stressed spring-block network is done. The fixed boundary conditions will have influence

on the crack propagation dynamics only in the later stages where the cracks are reaching the edges, decreasing

the propagation speed of the radially oriented crack lines. In order to diminish the influence of this unrealistic

effect over the morphology of the final crack configurations, as we have already stated previously, we will present

results only for an inner disk shaped part of the simulated system.

4. Model parameters

At a first glance one might get concerned that the spring-block model presented in the previous section has too

many freely adjustable parameters. We will see however that most of the parameters can be fixed by simple

arguments and only a few main controllable parameters are of importance for us.

Let us discuss now the model parameters.

• The unit length in the system is defined by the size of the disks. So it has been considered r0 = 1.

• Size of the simulated system. Evidently the best would be to have as large system as possible in order

to minimize the effect of edges. Our computational resources allowed us to study systems of sizes up to

600× 600 blocks and the used disk shaped region had usually a radius of 200r0, containing around 125000
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blocks.

• One of the parameters that will appear immediately at the initiation stage is the level of space filling for the

blocks related to r0 and the lattice constant of the used triangular lattice. This space-filling parameter can

be defined as ρ = S/(Nπr20), where S is the simulation area and N is the number of blocks in the system.

Since we are simulating a continuous media, one has to deal with high, almost close-packing space filling.

In order to allow also for slipping we have chosen a convenient ρ = 0.85 value for most of our simulations.

• The force units are defined through the value of the spring-breaking threshold. Accordingly, Fkmax = 1 was

imposed.

• An important parameter is the initial value of the spring constants, k. It is desirable to choose the value of

k so that only a small fraction of springs should break initially, such that our model system is as compact

as possible. Combining with the other choices of the force-like parameters we have found that a value of

0.4 units yields a good initial structure with enough frozen stresses and few bonds that are broken.

• The parameter which governs the repulsive part of the spring force. This can be chosen quite arbitrarily,

the only condition we have to respect is to have no repulsion at the distance 2r0 and a strong hard-core

type repulsion for smaller distances. We have chosen this force as the repulsive part of the Lenard-Jones

potential Fr(2r0 − r) = σ(2r0 − r)12 with σ = 10, chosen arbitrarily. Other values for σ would not alter

significantly our results.

• The viscous damping coefficient η. The model will only work for values chosen between reasonable limits,

and for these viscous damping values the final patterns are rather similar. Choosing a too small value will

result in unrealistic oscillations of the blocks, while a too high value will make the block slip too small and

increase considerably the relaxation time. In the present simulations we have chosen the η = 100 value.

• The parameters of the applied stress. As discussed already the applied loading has a rotationally symmetric

and exponentially decaying form: kextra = k0 · exp(−x/λ). The characteristic decay distance was chosen as

λ = 30 and the k0 parameter was the main parameter governing the strength of the applied shock.

• The interval [Ff1, Ff2] from where the pinning force values are randomly drawn. This is the second free

parameter set of the model, allowing to study the effect of disorder in the system.

• The lattice constant of the underlying square lattice on which the disorder in the friction forces is realized.

Together with the Ff1 and Ff2 parameters this can also influence the disorder level in the system. Since

we have chosen to control the disorder level with Ff1 and Ff2, we have fixed this lattice constant to the r0

value.

As detailed above only a few parameters of the model are not fixed by simple conceptual considerations. We

remain thus with the following parameters that will govern the generated patterns: the magnitude of the external
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shock loading and the Ff1 and Ff2 values governing the disorder in the studied material. The influence of these

parameters on the final crack structure was investigated by large-scale computer simulations.

5. Simulation results

Large-scale computer simulations were performed to analyze the influence of the applied shock intensity and

disorder in the friction forces. To complete one simulation on a large S = 600 × 600 system several weeks of

computing were necessary on the computer cluster available for us. By using the parameter set specified in the

previous section the reproduction of the radially spreading crack-lines was quite straightforward (Figures 5 and

6). The obtained time evolution of cracks and the final crack patterns are quite realistic. A typical time-evolution

sequence is shown in Figure 5 for two applied shock intensities. In agreement with our expectations we got that

with increasing shock intensity (governed by the k0 parameter) the number of radially spreading crack lines are

also increasing. Besides the radially oriented crack lines a circle shape crack-line is also observable at a distance of

the order of λ. The radius of this concentric crack line is increasing with the intensity of the applied shock. One

can also observe that the obtained patterns have an increased rotational symmetry relatively to those presented

in Figures 1 and 2. The explanation of this is simple: in our computer simulation experiments we have always

used a completely rotationally symmetric stress profile, while in real-life experimental situations rarely is this the

case.

Figure 5. Typical crack evolution patterns for two different impact intensities, quantified by the value of k0. The other parameters
of the simulations are: S = 600× 600, η = 100, ρ = 0.85, k = 0.4, Ffmax ∈ [0, 0.3].

Another striking difference between the patterns in Figure 5 and 2 is that the crack lines in our model are much

more straight ones than in reality. We suspect that the reason for this is that the amount of disorder chosen in
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the simulation from Figure 5 is not enough. Simulations performed with increased randomness (governed by the

interval in which the Ffmax forces are distributed) leads to wiggling crack lines (Figure 6). We conclude thus

that in order to get more realistic radially spreading crack lines a higher disorder level should be used. In Figure

6 the unrealistic bifurcation of cracks in the vicinity of the edges is due to the fact that fixed boundary conditions

were used, and thus the blocks on the edges are less movable.

Figure 6. Crack patterns obtained for two different disorder levels in the Ffmax friction force values. The pattern presented in
the figure from left is for Ff ∈ [0, 0.2] and the pattern presented in the figure from the right is for Ffmax ∈ [0, 0.5].
The other simulation parameters are: S = 400× 400, η = 100, ρ = 0.85, k = 0.4.

Finally, we have performed several simulations in order to study the scaling of the number of radially spreading

crack lines as a function of the impact strength, quantified by the value of k0. Simulations on systems with sizes

S = 400×400 were done, with η = 100, ρ = 0.85, k = 0.4 and Ffmax ∈ [0, 0.5]. The simulation results are plotted

on Figure 7. Although the number of radial cracks were not strictly monotonically increasing with the applied

shock intensity, a linear approximation seems acceptable for fitting the obtained data.

Figure 7. Simulation and experimental results for the scaling of the number of radial cracks as a function of the applied shock.
The smaller inset figure presents the experimental results obtained in [42]. The dropping height in the figure is given in
cm. The parameters for the computer simulations are: S = 400× 400, η = 100, ρ = 0.85, k = 0.4 and Ffmax ∈ [0, 0.5]
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6. Experiments

The experiments were performed as part of a student project at the National Technical University of Grenoble

(France) [42]. The aim of these experiments were to study qualitatively the morphology of the fracture patterns

induced by a controlled perpendicular impact on glass plates. The experiments were designed as simple ”kitchen

experiments”, without the claim of a thorough and rigorous experimental investigation. The obtained results are

thus only of qualitative nature. The experimental setup was very simple. Glass plates with sizes of 40cm×40cm

and thickness of 4mm were covered from the bottom with a plastic sticker to prevent the spreading of glass

after the impact. Preliminary experiments have shown that by changing the thickness of the glass plates one

can influence the number of nucleated crack-lines, since a part of the impact energy is used for the in-depth

penetration of cracks. Within this student project the thickness dependence was not thoroughly investigated and

we have used cheap commercial glass-plates with the same 4mm thickness.

The glass plates were fixed on a surface and a standard petanque ball (with mass of 0.73kg and diameter of 0.075m)

was dropped on them from different heights, guided by a plastic tube with adjustable length (h ∈ [2, 10]m). The

contact area (crushed region of the glass plate) was disc-shaped with a radius of about 2cm. The experiments

were performed in the staircase of the laboratory, and we have to admit the students had a big fun doing them.

For each height we have performed only one experiment due to the very limited budget of the project. The

experiments were designed for a qualitative mapping, nevertheless ulteriorly we realized that the results could be

useful for predicting or confirming simple trends, like the scaling of the number of radially propagating crack lines

with the dissipated energy. The lack of repeated experiments for the same height diminishes however the trust in

the quantitative data, since there is practically no way to add error-bars. This setup is sketched in Figure 8.

After impact the obtained fracture patterns were recorded and analyzed in different aspects. One aim of the

experiments was to elucidate how the number of radial crack lines are varying with the strength of the impact.

It is a well-known fact that the growth of a crack requires the creation of two new surfaces and hence an increase

in the surface energy. This energy comes from the impact, or in other words one can affirm that during crack

propagation the impact energy is dissipated in the newly created surfaces. In the experimental setup the amount

of energy dissipated in the impact is directly proportional with the height of the petanque ball’s drop. Our

modeling assumption is that in the spring-block approach this energy should be transferred in the elastic energy

of the springs which in turn is directly proportional with the values fixed for the spring-constants. In such view

one might expect that the height of the drop will be equivalent with the the extra k0 value used in the spring-block

model.

Plotting the experimentally obtained radial crack lines as a function of the drop height, an approximately linear

trend is obtained in good agreement with the predictions of the simple spring-block approach (inset graph in Fig.

7). We emphasize here again that due to the fact that no error-bars are given for the data-points, one can only

qualitatively judge the obtained trend.
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Figure 8. Experimental setup.

7. Conclusion

A simple spring-block type model was considered for describing the crack patterns obtained in the fracture of

glass plates due to a point-like impact. Beside a qualitative reproduction of the experimentally detected radial

and circular crack lines, the aim of the study was to get some quantitative results for the scaling of the number of

radial crack lines as a function of the strength of the impact. A previously performed student project suggested

that the number of radial crack lines varies linearly as a function of the mechanical energy dissipated in the

impact.

The specific plasticity and structure of glass was incorporated in the spring-block system by considering an

isotropic topology of the spring network and a disorder in the slipping thresholds of the blocks. The energy of

the impact was modeled by increasing instantaneously the spring-constant values in the system. The cracks were

obtained by relaxing the loaded spring-block system and by breaking all springs that exceeded a threshold tension.

Large scale computer simulations were performed for investigating the effect of impact strength and amount of

disorder quenched in the model. The computationally generated crack structures were realistic if enough disorder

was introduced in the system. In such cases the model reproduced well the experimentally obtained scaling law

for the number of radial crack lines as a function of the impact energy.

A secondary aim of the research was to prove once again the usefulness and wide applicability of the simple
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spring-block type models. This model family seems especially useful for modeling mesoscopic or macroscopic

scale collective phenomena or avalanche like dynamics in complex systems. As the present work exemplifies, it is

easily adaptable for various materials and problems, and carries also a pedagogical value since it offers a visual

picture on many complex phenomena based on elementary classical mechanics knowledge.
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