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ABSTRACT: The different configurations (linear, zig-zag, and cyclic) of formamide
dimers have been studied at the level of both Hartree–Fock (HF) and second order
Møller–Plesset perturbation theory (MP2). The widely used a posteriori Boys–Bernardi
“counterpoise” (CP) correction scheme has been compared with our a priori methods
utilizing the “chemical Hamiltonian approach” (CHA). The appropriate interaction
energies have been calculated in six different basis sets (6-31G, 6-31G∗∗, DZV, DZP, TZV,
and cc-pVDZ). c© 2001 John Wiley & Sons, Inc. Int J Quantum Chem 84: 617–622, 2001
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Introduction

F ormamide molecules play a very important
role in biophysics. Many recent papers [1 – 7]

have studied this molecule from both the theoretical
and experimental points of view. The monomers, as
well as the different hydrogen bonds between them,
are at the center of these studies.
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The purpose of the present work is to calcu-
late the interaction energy minima in three for-
mamide dimers having different structures—linear,
zig-zag, and cyclic, respectively—taking into ac-
count the basis set superposition error (BSSE) thor-
oughly. Different a posteriori and a priori schemes
have been proposed in the literature for treat-
ing the BSSE problem. In 1969/1970, Jansen and
Ross [8] and, independently, Boys and Bernardi [9],
introduced an a posteriori correction scheme called
“function counterpoise” (CP), or simply the Boys–
Bernardi method. In this scheme, one compensates
the monomer energy lowering taking place in the
supermolecule by recalculating the monomer ener-
gies at each geometric arrangement of the system
by using the whole supermolecule basis. In 1991,
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Mayer and Surján extended this method to the case
when relaxation of the monomer geometries is also
taken into account [10]. It has been shown that in ad-
dition to the supermolecule energy calculation and
the calculations of the free monomers, one has to
perform four additional calculations for each geo-
metric arrangement of the supersystem: one also
needs the energies of each relaxed monomer in both
supermolecule and monomer basis sets (“7 point
formula”); this makes the general use of the CP
method more complicated.

About 15 years ago, Mayer and his co-workers
started to develop a conceptually different method
to solve the BSSE problem, based on the so-called
“chemical Hamiltonian approach” (CHA) [11]. In
this a priori scheme, one identifies those terms of
the Hamiltonian that actually cause BSSE. Omitting
these terms, we can get a “physical” Hamiltonian,
which leads to the wave functions that are free
from the BSSE-caused nonphysical delocalizations.
Several different approaches have been developed
using the CHA scheme both at the HF level [12 – 18]
and using second order perturbation theory [21].

According to the previous calculations, the re-
sults provided by the CP and CHA methods are
very close to each other, despite of the fact that
these schemes are conceptually very different. In
this work we apply both methods in order to study
the structure of the formamide dimers. As will be
seen, the results give a further confirmation of the
near equivalence of these BSSE correction meth-
ods. The calculations are performed at two different
theoretical levels—Hartree–Fock (HF) and second
order Møller–Plesset (MP2) perturbation theory—
using six different basis sets (6-31G, 6-31G∗∗, DZV,
DZP, TZV, and cc-pVDZ).

The methods applied (CP, CHA/HF, and CHA/
MP2) are briefly reviewed in the next section. In
the third section, the results of the calculations per-
formed on three different structures of formamide
dimers are presented in six basis sets, and the in-
teraction energies obtained are compared and dis-
cussed.

The Methods Applied (CP, CHA/HF,
and CHA/MP2)

The simplest definition of the uncorrected inter-
action energy �Eunc.

AB between the “monomers” A
and B is the difference of the supermolecule energy
and the sum of the free monomer energies, each cal-
culated in its own basis set:

�Eunc.
AB = EAB(AB) − EA(A) − EB(B), (1)

where EAB(AB), EA(A), and EB(B) denote the total
energy of the AB “supermolecule” and of the A
and B monomers, respectively. The notations in the
parentheses indicate that basis sets corresponding
to the (sub)system A, B, and AB, respectively, were
used. The above definition would be the correct one
if one were able to perform the calculations of the
free monomers exactly; this would require the use
of (nearly) complete basis sets on each monomer,
which is usually far from feasible. Experience shows
that the use of incomplete monomer basis sets leads
to slightly overestimated interaction energies, i.e., to
BSSE. It is important to realize that BSSE is not a
physical phenomenon, but only an artifact of using
finite basis sets. In the Boys–Bernardi method [8, 9],
this “mathematical effect” is eliminated by intro-
ducing the so-called “counterpoise” (CP) corrected
interaction energy which is defined as:

�ECP
AB = EAB(AB) − EA(AB) − AB(AB). (2)

Here the monomer interaction energies EA(AB)
and EB(AB) are calculated the same as a basis set
used for the AB supermolecule. As can be seen
from Eq. (2), the description of the monomers is ad-
justed to the dimer problem so the energies (and
other properties ) of the “free” monomers become
distance-dependent. At the same time a new dif-
ficulty comes from the changes of the monomer
geometry; namely, the internal geometries of the
monomers are allowed to change during the dimer
formation (it is called “monomer relaxation”). To
take into account this effect, a new definition is
needed calculating the appropriate BSSE-corrected
interaction energy:

�ECP,rel.
AB = Erel.

AB(AB) − Erel.
A (AB) − Erel.

B (AB)

+ [
Erel.

A (A) − EA(A)
] + [

Erel.
B (B) − EB(B)

]
, (3)

where rel. indicates the relaxed internal monomer
energies, and the differences [Erel.

A (A) − EA(A)] and
[Erel.

B (B) − EB(B)] are the relaxation energies for
monomers A and B, respectively [10]. As Eq. (3)
shows, in order to calculate a single point on the CP
corrected interaction energy surface of the relaxed
monomers, one needs to perform five different cal-
culations (in addition to the monomer energy calcu-
lations in the monomer basis sets).

In the alternative a priori CHA method, one
omits those terms of the Hamiltonian which cause
BSSE. The CHA scheme permits the supermole-
cule calculations to keep consistency with those
for the free monomers performed in their original
monomer basis sets. The only disadvantage of this
procedure is that the resulting CHA Hamiltonian
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is not Hermitian: as the BSSE is not a physical
phenomenon, there cannot be any Hermitian oper-
ator associated with it—so one cannot expect the
BSSE-free Hamiltonian ĤCHA to be Hermitian ei-
ther. Based on this CHA Hamiltonian, SCF-type
equations and perturbational techniques have been
developed [12, 21] which give the BSSE-free wave
functions. However, it was established [13] that the
energy of these BSSE-free wave functions should
be calculated by using the usual Hermitian Hamil-
tonian. This follows from the requirement that the
energy must be real and is supported by some an-
alytical considerations [19] and a huge amount of
the numerical results [14 – 16]. (This procedure of
the energy calculations is often referred to by the
acronym “CHA/CE”—CHA with conventional en-
ergy calculation.)

While the CHA generalization of the SCF pro-
cedure is a relatively straightforward one, the gen-
eralization to the correlated level has a number of
difficulties. It was shown [20] that the appropriate
second order energy can be obtained as follows.
First, we have to calculate the first order CHA wave
function χ by using the non-Hermitian CHA Hamil-
tonian partitioned as ĤCHA = Ĥ0 + V̂CHA, where
Ĥ0 is a Møller–Plesset-type unperturbed Hamil-
tonian which is also non-Hermitian, as it is built
up of the nonorthogonal eigenvectors of the non-
Hermitian CHA-SCF equations [12]. The Hermitian
conventional Hamiltonian Ĥ should also be taken
as a sum of the same non-Hermitian unperturbed
Hamiltonian Ĥ0 and of some (also non-Hermitian)
perturbation V̂, that is V̂ = Ĥ − Ĥ0. In short,
we use a Møller–Plesset-type partitioning of the
conventional Hamiltonian, but the unperturbed Ĥ0

is built up of the eigenvalues and (nonorthogo-
nal) eigenvectors of the non-Hermitian CHA-SCF
equations. Then a detailed analysis shows that

FIGURE 1. Structure of the linear, zig-zag, and cyclic
dimers of formamide.

the second order energy contribution can be cal-
culated as using the generalized Hylleraas func-
tional J2 [20] with the first order CHA wave func-
tion χ :

J2 = 1
〈�0|�0〉

[
2Re

(〈Q̂χ |V̂|�0〉
) + Re

(〈
χ

∣∣Ĥ0 − E0
∣∣χ

〉)]
.

(4)
Here �0 is the unperturbed wave function, E0

is the zero order energy (Ĥ0�0 = E0�0), and Q̂ is
the projection operator on the orthogonal comple-
ment to �0. This generalized Hylleraas-functional
represents the appropriate application of the CHA
scheme with conventional energy calculation for
the perturbational problem. This formalism is called
(“CHA/MP2”) [21]. In this perturbation theory, the
zero order energy is the sum of the occupied or-
bital energies. Although the CHA Hamiltonian is
not Hermitian, the occupied orbital energies where
found to be real in all cases studied, providing E0
is real. Complex virtual orbital energies do occur

TABLE I
Interaction energies for formamide dimers in different conformations (Fig. 1) computed at the Hartree–Fock (HF)
level, using 6-31G and 6-31G∗∗ basis sets. �Eunc.

HF with uncorrected interaction energy; �ECP
HF with “counterpoise”

(CP) corrected interaction energy for rigid monomers; �ECP,rel.
HF with “counterpoise” (CP) corrected interaction

energy for relaxed monomers, and �ECHA
HF with CHA correction (in kcal/mol).

6-31G 6-31G∗∗

Dimer �Eunc.
HF �ECP

HF �ECP,rel.
HF �ECHA

HF �Eunc.
HF �ECP

HF �ECP,rel.
HF �ECHA

HF

Linear −8.199 −7.659 −7.459 −7.065 −6.332 −5.812 −5.644 −6.134
Zig-zag −8.265 −7.748 −7.544 −7.225 −6.358 −5.856 −5.703 −6.264
Cyclic −16.441 −14.939 −14.001 −14.236 −13.390 −12.018 −11.196 −12.436
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TABLE II
Interaction energies for formamide dimers in different conformations (Fig. 1) computed at the Hartree–Fock
(HF) level, using DZV and DZP basis sets. �Eunc.

HF with uncorrected interaction energy; �ECP
HF with

“counterpoise” (CP) corrected interaction energy for rigid monomers; �ECP,rel.
HF with “counterpoise” (CP)

corrected interaction energy for relaxed monomers, and �ECHA
HF with CHA correction (in kcal/mol).

DZV DZP

Dimer �Eunc.
HF �ECP

HF �ECP,rel.
HF �ECHA

HF �Eunc.
HF �ECP

HF �ECP,rel.
HF �ECHA

HF

Linear −8.592 −8.027 −7.832 −8.019 −6.338 −5.901 −5.759 −5.927
Zig-zag −8.612 −8.085 −7.873 −8.069 −6.360 −5.942 −5.796 −5.971
Cyclic −16.072 −15.152 −14.199 −15.307 −12.159 −11.884 −11.130 −12.065

in practice; as they always appear in complex con-
jugate pairs, the CHA/MP2 energy corrections are
always real [21].

Results and Discussion

The calculation has been carried out partly in
Heidelberg (on an IBM SP2 cluster) and partly in
Debrecen (on a Pentium 200 PC running Linux).
In the standard HF and MP2 calculations, the
Gaussian 98 computer code [23] was utilized, while
the CHA- type calculation was performed by a
slightly modified version of HONDO-8 [22].

In these calculations, we have used the same
CHA/HF and CHA/MP2 programs as in [12, 21]. In
this work we have considered three different config-
uration of formamide dimers—linear, zig-zag, and
cyclic—as shown on Figure 1. The dimer geometries
were opimized at two theoretical levels—Hartree–
Fock (HF) and second order Møller–Plesset pertur-
bation theory (MP2) for each basis set.

Six different basis sets were used: 6-31G, 6-31G∗∗,
DZV, DZP, TZV, and cc-pVDZ. 6-31G and 6-31G∗∗

are standard Pople’s basis sets; DZV, DZP, and TZV
are the built-in basis sets of HONDO-8 system. They
were read into the Gaussian system. At the same
time, we had to input externally the cc-pVDZ basis
to the HONDO. A small difficulty should be noted
in this connection: HONDO-8 only performs cal-
culations by using 6d and 10f functions, while the
cc-pVDZ basis is assumed to use pure d and f func-
tions. This may cause minor discrepancies in the
comparisons.

Tables I–III display the results obtained for the in-
teraction energies using for different methods at the
Hartree–Fock level. Results marked (�Eunc.

HF , �ECP
HF,

and �ECP,rel.
HF ) represent the results obtained in cal-

culations with no BSSE correction, the standard
CP corrected results obtained without admitting
geometry relaxation and the CP corrected results
with geometry relaxation, as prescribed by the “7-
point” formula Eq. (3). The fourth type of the results
(�ECHA

HF ) is those given by the CHA calculations.

TABLE III
Interaction energies for formamide dimers in different conformations (Fig. 1) computed at the Hartree–Fock
(HF) level, using TZV and cc-pVDZ basis sets. �Eunc.

HF with uncorrected interaction energy; �ECP
HF with

“counterpoise” (CP) corrected interaction energy for rigid monomers; �ECP,rel.
HF with “counterpoise” (CP)

corrected interaction energy for relaxed monomers, and �ECHA
HF with CHA correction (in kcal/mol).

TZV cc-pVDZ

Dimer �Eunc.
HF �ECP

HF �ECP,rel.
HF �ECHA

HF �Eunc.
HF �ECP

HF �ECP,rel.
HF �ECHA

HF

Linear −7.885 −7.401 −7.220 −7.387 −6.508 −5.480 −5.295 −5.637
Zig-zag −7.901 −7.464 −7.274 −7.451 −6.530 −5.511 −5.342 −5.691
Cyclic −14.385 −14.369 −13.529 −14.306 −13.538 −11.074 −10.218 −11.897
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TABLE IV
Interaction energies for formamide dimers in different conformations (Fig. 1) computed at the second order
Møller–Plesset perturbation theory (MP2) level, using 6-31G and 6-31G∗∗ basis sets. �Eunc.

MP2 with uncorrected

interaction energy; �ECP
MP2 with “counterpoise” (CP) corrected interaction energy for rigid monomers; �ECP,rel.

MP2
with “counterpoise” (CP) corrected interaction energy for relaxed monomers, and �ECHA

MP2 with CHA correction
(in kcal/mol).

6-31G 6-31G∗∗

Dimer �Eunc.
MP2 �ECP

MP2 �ECP,rel.
MP2 �ECHA

MP2 �Eunc.
MP2 �ECP

MP2 �ECP,rel.
MP2 �ECHA

MP2

Linear −8.322 −6.474 −6.277 −6.389 −7.792 −6.071 −5.840 −5.817
Zig-zag −8.051 −6.369 −6.206 −6.186 −7.423 −5.822 −5.642 −5.894
Cyclic −17.848 −13.591 −12.649 −12.710 −17.157 −13.379 −12.201 −12.264

Tables IV–VI display the results obtained for
the interaction energies using different methods at
the second order Møller–Plesset perturbation theory
level. Results marked �Eunc.

MP2, �ECP
MP2, and �ECP,rel.

MP2
were obtained in calculations with no BSSE cor-
rection, the standard CP corrected results obtained
without admitting geometry relaxation, and the CP
corrected results with geometry relaxation, as pre-
scribed by the “7-point” formula Eq. (3). The fourth
type of result (�ECHA

MP2 ) is given by the CHA calcula-
tions.

Considering the results, the following conclusion
can be drawn. In all calculations, the cyclic structure
is roughly twice as stable as the other two, which
is in agreement with the fact that it contains two
hydrogen bonds. No significant tendencies could
be observed as far as the small differences in the
strength of individual hydrogen bonds in the dif-
ferent isomers/structures—the basis set effects, etc.,
are bigger than these tiny effects and vary quite ran-
domly.

Concerning the comparison of the different meth-
ods, we make the following observations. (1) As ex-
pected, the BSSE-free �ECHA

HF and the BSSE-corrected
CP interaction energies (�ECP

HF and �ECP,rel.
HF ) exhibit

less deep minima than those given by the usual un-
corrected (�Eunc.

HF ) HF one. Exactly the same effect
can be seen in correlated level, namely, the BSSE-
free �ECHA

MP2 and the BSSE-corrected CP interaction
energies (�ECP

MP2 and �ECP,rel.
MP2 ) are higher than the

uncorrected (�Eunc.
MP2) MP2 one. The difference be-

tween the CP and CHA results is essentially not
significant, while the uncorrected interaction ener-
gies differ appreciably from these three corrected
results in all cases. (2) The use of larger basis sets
(adding polarization function to a given basis) in
the calculations provides a better description for the
dimer structure. (3) Turning to the correlated level,
the amount of the BSSE content in the intermolecu-
lar interaction energies is much higher than those in
Hartree–Fock level. Most probably, BSSE correction
remains imperative even for the largest basis sets.

TABLE V
Interaction energies for formamide dimers in different conformations (Fig. 1) computed at the second order
Møller–Plesset perturbation theory (MP2) level, using DZV and DZP basis sets. �Eunc.

MP2 with uncorrected
interaction energy; �ECP

MP2 with “counterpoise” (CP) corrected interaction energy for rigid monomers;

�ECP,rel.
MP2 with “counterpoise” (CP) corrected interaction energy for relaxed monomers, and �ECHA

MP2 with CHA
correction (in kcal/mol).

DZV DZP

Dimer �Eunc.
MP2 �ECP

MP2 �ECP,rel.
MP2 �ECHA

MP2 �Eunc.
MP2 �ECP

MP2 �ECP,rel.
MP2 �ECHA

MP2

Linear −8.709 −6.784 −6.577 −6.988 −7.524 −6.089 −5.884 −6.352
Zig-zag −8.604 −6.798 −6.616 −6.839 −7.391 −5.956 −5.800 −6.065
Cyclic −17.362 −13.815 −12.795 −13.732 −15.788 −13.445 −12.316 −13.901
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TABLE VI
Interaction energies for formamide dimers in different conformations (Fig. 1) computed at the second order
Møller–Plesset perturbation theory (MP2) level, using TZV and cc-pVDZ basis sets. �Eunc.

MP2 with uncorrected
interaction energy; �ECP

MP2 with “counterpoise” (CP) corrected interaction energy for rigid monomers;

�ECP,rel.
MP2 with “counterpoise” (CP) corrected interaction energy for relaxed monomers, and �ECHA

MP2 with CHA
correction (in kcal/mol).

TZV cc-pVDZ

Dimer �Eunc.
MP2 �ECP

MP2 �ECP,rel.
MP2 �ECHA

MP2 �Eunc.
MP2 �ECP

MP2 �ECP,rel.
MP2 �ECHA

MP2

Linear −7.697 −6.421 −6.284 −6.551 −7.959 −5.478 −5.220 −6.054
Zig-zag −7.686 −6.403 −6.271 −6.529 −7.489 −5.252 −5.055 −5.670
Cyclic −14.744 −13.151 −12.372 −13.438 −17.114 −12.001 −10.663 −13.701

In this article, we applied BSSE-free methods in
order to investigate the structure of the formamide
dimers. It can be concluded that the results also give
a further confirmation of the near equivalence of the
a posteriori CP and a priori CHA methods. The in-
teraction energies are strongly dependent upon the
basis sets applied, so our next aim will be to perform
a more extensive study for the basis set dependence
of the structure of formamide dimers. In orde to
achieve this, one needs to first build the CHA codes
into the Gaussian system.
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