
Math. Nachr. 278, No. 15, 1756 – 1765 (2005) / DOI 10.1002/mana.200510339

On a class of quasilinear eigenvalue problems in RN
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We study an eigenvalue problem in RN which involves the p-Laplacian (p > N ≥ 2) and the nonlinear term
has a global (p − 1)-sublinear growth. The existence of certain open intervals of eigenvalues is guaranteed
for which the eigenvalue problem has two nonzero, radially symmetric solutions. Some stability properties of
solutions with respect to the eigenvalues are also obtained.
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1 Introduction

Consider the problem

−�pu + |u|p−2 u = λα(x)f(u) , x ∈ RN , u ∈ W 1,p
(
RN

)
, (Pλ)

where λ is a positive parameter, α : RN → R is a measurable function and f : R → R is a continuous function.
We assume 1 < p < ∞ and N ≥ 1.

In the case when p ≤ N, closely related problems to Eq. (Pλ) have been extensively studied. Existence and
multiplicity results for Eq. (P1) can be found for instance in the papers [2, 3, 21, 22] for the semilinear case
(i.e., p = 2), while for quasilinear problems (i.e., p �= 2) important contributions to Eq. (Pλ) can be found
in [11]. When f is not necessarily continuous, related problems to Eq. (Pλ) were considered in [8, 9]. The
reader is referred to [14, 19, 20] in order to find multiplicity results for very general eigenvalue problems. The
aforementioned works have a common feature; namely, the involved nonlinearities have some sort of superlinear
growth at infinity.

The purpose of this paper is to ensure the existence of multiple solutions for Eq. (Pλ), completing the above
papers from two aspects. More precisely, we will investigate Eq. (Pλ) under the following conditions:

(i) p > N ≥ 2,
and

(ii) f has a global (p − 1)-sublinear growth, i.e.,

(A) There exist C > 0 and 1 < γ < p such that

|f(s)| ≤ C
(
1 + |s|γ−1

)
, s ∈ R .

The main difficulty studying Eq. (Pλ) lies on the fact that no compact embedding is available for W 1,p
(
RN

)
.

In spite of the fact that the embedding W 1,p
(
RN

)
↪→ L∞(RN

)
(p > N) is continuous, it is not compact. On the

other hand, Lions [12, Théorème II. 1] proved that the subspace of radially symmetric functions of W 1,p
(
RN

)
,

denoted further by W 1,p
r

(
RN

)
, may be compactly embedded into Lq

(
RN

)
if p ≥ N ≥ 2 and p < q < ∞.
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Unfortunately, this embedding fails to be compact for N = 1 or q ∈ {p,∞}. However, as a limit case, one can

still prove that W 1,p
r

(
RN

)
can be compactly embedded into L∞(RN

)
whenever p > N ≥ 2 (cf. Proposition

2.3); this fact will be indispensable in our arguments.
Denote by F (s) =

∫ s

0
f(t) dt. We introduce the energy functional Eλ : W 1,p

(
RN

) → R associated to
problem (Pλ) which is defined by

Eλ(u) =
1
p
‖u‖p

W 1,p − λ

∫
RN

α(x)F (u(x)) dx .

Due to the principle of symmetric criticality, the critical points of Rλ
def= Eλ

∣∣
W 1,p

r (RN )
become critical points of

Eλ as well, so radially symmetric, weak solutions of Eq. (Pλ) (cf. Propositions 2.2 and 2.1). Beside of condition
(A), we make the following two assumptions:

(B) There exists ν > p such that

lim sup
s→0

F (s)
|s|ν < ∞ ;

(C) α ∈ L1
(
RN

) ∩ L∞(RN
)
, α ≥ 0, and

sup
R>0

essinf
|x|≤R

α(x) > 0 and sup
s∈R

F (s) > 0 .

First of all, we emphasize that neither (B) nor (C) cannot be dropped in view to obtain multiple solutions for
Eq. (Pλ). Indeed, take first f ≡ 0. Then (B) is clearly verified while (C) fails and Eq. (Pλ) has only the trivial

solution for every real λ. On the other hand, if we take f ≡ 1 and α(x) =
(
1 + |x|N)−2

then (C) holds while
(B) fails. One can check that Rλ is bounded from below, satisfies the Palais–Smale condition (cf. Propositions
3.2 and 3.3, where only condition (A) is used), and it is strictly convex. Therefore, a unique critical point of Rλ

may exist which will be exactly its global minimum.
As far as the multiplicity of solutions of Eq. (Pλ) is concerned, we are going to prove first that for enough

“large” λ’s the infimum of Rλ is strictly negative (which ensures the existence of a negative critical level), while
another critical point of Rλ (with strictly positive energy) is obtained by the classical Mountain Pass theorem.
Furthermore, we obtain information about the stability of the solutions with respect to the eigenvalues, similarly as
in [1] for boundary value problems. The range of those eigenvalues for which these arguments work is described
as follows.

In view of hypothesis (C), one can define the following two nonempty sets

I+
α =

{
R > 0 : αR = essinf

|x|≤R
α(x) > 0

}
and

I+
F = {s ∈ R : F (s) > 0} .

For every (R, s) ∈ I+
α × I+

F we define

IR,s =

#„
1 +

αRF (s)

‖α‖L∞ max|t|≤|s| |F (t)|
«−1/N

, 1

"
(1.1)

and for σ ∈ IR,s set

λσ,R,s =
|s|p
p

1 + R−p
(
1 − σN

)
(1 − σ)−p

αRF (s)σN − ‖α‖L∞ max|t|≤|s| |F (t)|(1 − σN
) . (1.2)

By Eqs. (1.1) and (1.2) it is clear that for the two values of σ0
R,s ∈ ∂IR,s (with R, s fixed) one has λσ,R,s → +∞

whenever σ → σ0
R,s and σ ∈ IR,s. Thus, the following number is well-defined:

λ∗ = inf
(R,s)∈I+

α ×I+
F

min
σ∈IR,s

λσ,R,s . (1.3)

We will prove
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Theorem 1.1 Let p > N ≥ 2, f : R → R be a continuous function, and α : RN → R be a radially
symmetric function, which satisfy conditions (A), (B) and (C).

Then, for every λ > λ∗ problem (Pλ) has two distinct, nonzero, radially symmetric weak solutions uλ and vλ

with Eλ(uλ) < 0 < Eλ(vλ). Moreover, uλ and vλ can be constructed such that

sup
λ∈K

max{‖uλ‖W 1,p , ‖vλ‖W 1,p} < +∞ (1.4)

for every bounded set K ⊂ ]λ∗, +∞[ , assuming that the infimum in Eq. (1.3) is achieved on I+
α × I+

F whenever
λ∗ = inf K . In addition, if f(s) = 0 for all s ≤ 0, the solutions uλ and vλ are nonnegative.

A simple estimation which is based on our hypotheses shows that

λ∗ ≥ 1
p ‖α‖L∞

inf
s∈I+

F

|s|p
F (s)

> 0 ,

and by construction, the number λ∗ seems to be the lower limit of those eigenvalues for which the proof of
Theorem 1.1 can be carried out in the above-described way.

A natural question instantly arises: can one ensure the existence of further positive eigenvalues which are
strictly smaller than λ∗ for which Eq. (Pλ) still has two nonzero solutions? An affirmative answer is given in the
following

Theorem 1.2 Under the assumptions of Theorem 1.1 suppose in addition that the infimum in Eq. (1.3) is
achieved on I+

α × I+
F .

Then there exists an open interval Λ ⊂ [0, λ∗] such that for every λ ∈ Λ problem (Pλ) has two distinct,
nonzero, radially symmetric weak solutions uλ and vλ with the property

sup
λ∈Λ

max{‖uλ‖W 1,p , ‖vλ‖W 1,p} < +∞ .

In addition, if f(s) = 0 for all s ≤ 0, the solutions uλ and vλ are nonnegative.

This result will be proved by means of a recent abstract critical point result of G. Bonanno [4] which is
actually a refinement of a general principle of B. Ricceri [17, 18]. Various applications and extensions of this
general principle are already available, see for instance [5, 6, 10, 13].

Remark 1.3 Unfortunately, if the infimum in Eq. (1.3) is not achieved on I+
α × I+

F , then we are not able to
control in Theorem 1.1 the stability of solutions (as in Eq. (1.4)) for those eigenvalues which are arbitrary close to
λ∗. Moreover, the conclusion of Theorem 1.2 is also radically modified in this case; namely, only the following
fact can be proved: for every h > 1 there exist an open interval Λh ⊂ [0, hλ∗] and a number µh > 0 such
that for every λ ∈ Λh problem (Pλ) has two distinct, nonzero, radially symmetric weak solutions uλ and vλ so
that supλ∈Λh

max{‖uλ‖W 1,p , ‖vλ‖W 1,p} ≤ µh. In particular, it can happen that λ∗ < inf Λh; if so, the above
thesis does not furnish any new information in comparison to Theorem 1.1. However, several problems can be
encountered where the infimum in Eq. (1.3) is achieved on I+

α × I+
F , and consequently, our results can be fully

applied. We present such an example in the sequel.

Example 1.4 Consider the problem

−�3u + |u|u = λ
1

(1 + |x|2)2
(
arctanu3 + 3u3(1 + u6)−1

)
, x ∈ R2 , u ∈ W 1,3

(
R2
)
. (Eλ)

Let

E = inf
R>0

min
σ∈IR

1 + R−3(1 + σ)(1 − σ)−2

σ2(1 + R2)−2 − 1 + σ2
where IR =

](
1 + (1 + R2)−2

)−1/2
, 1
[

,

and let s0 be the unique positive solution of the equation (1+s2) arctan s = 3s/2. (By means of standard Matlab
routines we obtained s0 ≈ 0.928, while the infimum in the expression E is achieved for R ≈ 0.6575; it is E ≈
3030.75.) The infimum in Eq. (1.3) is achieved for R and s̄ = s

1/3
0 ; more precisely, λ∗ =

(
3 arctan s̄3

)−1
s̄2E.

Then, there exists an open interval Λ ⊂ [0, λ∗] such that (Eλ) has at least two nonzero, radially symmetric weak
solutions for every λ ∈ Λ∪ ]λ∗, +∞[ with the properties described in Theorems 1.1 and 1.2, respectively.
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2 Preliminaries

The space W 1,p
(
RN

)
is endowed with the norm

‖u‖W 1,p =
(‖∇u‖p

Lp + ‖u‖p
Lp

)1/p
,

where ‖ · ‖Lp is the usual norm on Lp
(
RN

)
, p < ∞. The norm on L∞(RN

)
is given by

‖u‖L∞ = esssup
x∈RN

|u(x)| .

Throughout this section, we suppose that the assumptions of Theorem 1.1 are fulfilled. Since p > N,
the embedding W 1,p

(
RN

)
↪→ L∞(RN

)
is continuous; denote its Sobolev embedding constant by c∞, i.e.,

‖u‖L∞ ≤ c∞ ‖u‖W 1,p for every u ∈ W 1,p
(
RN

)
. Moreover, every function u ∈ W 1,p

(
RN

)
admits a continu-

ous representation, see [7, p. 166]; in the sequel, we will replace u by this element. For simplicity of notation, let
F : W 1,p

(
RN

)→ R be defined by

F(u) =
∫
RN

α(x)F (u(x)) dx .

Proposition 2.1 For every λ ∈ R, the function Eλ is continuously differentiable. Moreover, every critical
point of Eλ is a weak solution of Eq. (Pλ).

P r o o f. Let u, h ∈ W 1,p
(
RN

)
. Given x ∈ RN and 0 < |t| < 1, the standard mean value theorem implies

the existence of a θx ∈ ]0, 1[ such that

|α(x)F (u(x) + th(x)) − α(x)F (u(x))|
|t| = α(x) |f(u(x) + tθxh(x))h(x)|

≤ α(x) max {|f(s)| : |s| ≤ ‖u‖L∞ + ‖h‖L∞} |h(x)| .

Since α ∈ L1
(
RN

)
, the last expression of the above inequality belongs to L1

(
RN

)
. Thus, it follows from the

Lebesgue theorem that

〈F ′(u), h〉W 1,p =
∫
RN

α(x)f(u(x))h(x) dx , (2.1)

where 〈·, ·〉W 1,p denotes the duality pairing between W 1,p
(
RN

)
and its dual.

Now, let {un} be a sequence in W 1,p
(
RN

)
which converges strongly to a u ∈ W 1,p

(
RN

)
. In particular,

un → u strongly in L∞(RN
)
. Fix an ε > 0 arbitrarily. Since f is uniformly continuous on the compact interval

Iu = [−‖u‖L∞ − 1, ‖u‖L∞ + 1], there exists a number δ(ε) > 0 such that

|f(s) − f(t)| <
ε

2c∞‖α‖L1
for every t , s ∈ Iu , |s − t| < δ(ε) . (2.2)

In the same time, there exists nε ∈ N such that

‖un − u‖L∞ < min{δ(ε), 1} for every n ≥ nε . (2.3)

Combining Eq. (2.2) with Eq. (2.3), for every n ≥ nε and h ∈ W 1,p
(
RN

)
one has

∣∣〈F ′(un) −F ′(u), h〉W 1,p

∣∣ ≤ ε

2
‖h‖W 1,p ,

thus, ‖F ′(un) −F ′(u)‖(W 1,p)∗ < ε. Using Eq. (2.1), we obtain at once the last part of the proposition.
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The action of O(N) on W 1,p
(
RN

)
, defined by (gu)(x) = u

(
g−1x

)
for every g ∈ O(N), u ∈ W 1,p

(
RN

)
,

x ∈ RN , is linear and isometric; in particular ‖gu‖W 1,p = ‖u‖W 1,p , for every g ∈ O(N) and u ∈ W 1,p
(
RN

)
.

We say that a function h : RN → R is radially symmetric if h(gx) = h(x) for every g ∈ O(N), and x ∈ RN .
One can define the subspace of radially symmetric functions of W 1,p

(
RN

)
by

W 1,p
r

(
RN

)
=
{
u ∈ W 1,p

(
RN

)
: gu = u for every g ∈ O(N)

}
.

Taking into account that α : RN → R is radially symmetric, then F is O(N)-invariant, so is Eλ. In particular,
the principle of symmetric criticality of Palais [15, Theorem 5.4] realizes as follows.

Proposition 2.2 Every critical point of Rλ = Eλ|W 1,p
r (RN ) will be also a critical point of Eλ.

The next compactness result plays a vital role in our arguments.

Proposition 2.3 If p > N ≥ 2, the embedding W 1,p
r

(
RN

)
↪→ L∞(RN ) is compact.

P r o o f. It is well-know that for every u ∈ W 1,p
r

(
RN

)
we have

|u(x)| ≤ C(p, N) ‖u‖W 1,p |x|(1−N)/p a.e. x ∈ RN , (2.4)

where C(p, N) > 0, see Lions [12, Lemme II.1].
Let {un} be a sequence in W 1,p

r

(
RN

)
which converges weakly to some u ∈ W 1,p

r

(
RN

)
. By applying

inequality (2.4) for (un − u), and taking into account that the sequence {un − u} is bounded in W 1,p
r

(
RN

)
, and

N ≥ 2, then for every ε > 0 there exists Rε > 0 such that

‖un − u‖L∞(|x|≥Rε) ≤ C′ |Rε|(1−N)/p < ε for every n ∈ N , (2.5)

where C′ > 0 does not depend on n.
On the other hand, by Rellich theorem it follows that un → u strongly in C0(BN [0, Rε]), i.e., there exists

nε ∈ N such that

‖un − u‖C0(BN [0,Rε]) < ε for every n ≥ nε . (2.6)

(Here, BN [0, r] denotes the N -dimensional closed ball with center 0 and radius r > 0.) Combining Eq. (2.5)
with Eq. (2.6), one concludes that ‖un − u‖L∞ < ε for every n ≥ nε, i.e., un → u strongly in L∞(RN

)
.

In the proof of our results the following inequality will be useful.

Lemma 2.4 There exists C′′ > 0 such that F (s) ≤ C′′ |s|ν for every s ∈ R.

P r o o f. By hypothesis (B) we may fix two numbers, namely β ∈ ]0, 1] and M > 0, such that

F (s) ≤ M |s|ν , |s| < β .

By condition (A), we have

|F (s)| ≤ C
(
1 + |s|γ−1

) |s| ≤ C
1 + βγ−1

βν−1
|s|ν , |s| ≥ β .

By choosing C′′ = max
{

M, C 1+βγ−1

βν−1

}
, the required relation follows.

3 Proofs

We assume the hypotheses of Theorem 1.1 are fulfilled. For simplicity of notations, denote further by Rλ, ‖ · ‖r

and Fr the restriction of Eλ, ‖ · ‖W 1,p and F to the space W 1,p
r

(
RN

)
, respectively.

Proposition 3.1 Let λ ∈ R be arbitraryly fixed. Then every bounded sequence {un} in W 1,p
r

(
RN

)
such that∥∥R′

λ(un)
∥∥

(W 1,p
r )∗ → 0, contains a strongly convergent subsequence.

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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P r o o f. Taking a subsequence if necessary, thanks to Proposition 2.3, we may assume that

un −→ u weakly in W 1,p
r

(
RN

)
, (3.1)

un −→ u strongly in L∞(RN
)
. (3.2)

One the other hand, we have

In
not.=

∫
RN

(|∇un|p−2 ∇un − |∇u|p−2 ∇u
)
(∇un −∇u)

+
∫
RN

(|un|p−2 un − |u|p−2 u
)
(un − u)

= 〈R′
λ(un), un − u〉W 1,p + 〈R′

λ(u), u − un〉W 1,p

+ λ

∫
RN

α(x)[f(un(x)) − f(u(x))](un(x) − u(x)) dx .

Since ‖R′
λ(un)‖(W 1,p

r )∗ → 0, the first term tends to 0. By Eq. (3.1) it follows that the second term tends to 0 as
well. Finally, for n ∈ N large enough one has∣∣∣∣

∫
RN

α(x)[f(un(x)) − f(u(x))](un(x) − u(x)) dx

∣∣∣∣
≤ 2 ‖α‖L1 max{|f(s)| : |s| ≤ ‖u‖L∞ + 1} ‖un − u‖L∞ ,

and the last term tends to 0, due to Eq. (3.2). In conclusion,

lim
n→∞ In = 0 . (3.3)

Since we have the general inequality |t − s|p ≤ (|t|p−2 t − |s|p−2 s
)
(t − s) for every t, s ∈ Rm (m ∈ N) we

infer that ‖un − u‖p
r ≤ In. The last inequality combined with Eq. (3.3) leads to the fact that un → u strongly in

W 1,p
r

(
RN

)
, as claimed.

Proposition 3.2 For every λ ≥ 0, Rλ is coercive and bounded below.

P r o o f. By condition (A) and the continuous imbedding W 1,p
(
RN

)
↪→ L∞(RN

)
one readily has for every

u ∈ W 1,p
r

(
RN

)
that

Rλ(u) ≥ 1
p
‖u‖p

r − λC ‖α‖L1

(
c∞ ‖u‖r + cγ

∞ ‖u‖γ
r

)
. (3.4)

The assertion clearly follows, since γ < p.

Proposition 3.3 For every λ ≥ 0, Rλ satisfies the Palais–Smale condition.

P r o o f. Let {un} be a sequence in W 1,p
r

(
RN

)
such that {Rλ(un)} is bounded and ‖R′

λ(un)‖(W 1,p
r )∗ → 0

as n → +∞. The coercivity of Rλ (Proposition 3.2) implies the boundedness of the sequence {un}. Therefore,
from Proposition 3.1 the claim follows.

For (R, s) ∈ I+
α × I+

F and σ ∈ IR,s define

wσ,R,s(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 , if x ∈ RN \ BN (0, R) ,

s , if x ∈ BN (0, σR) ,
s

R(1 − σ)
(R − |x|) , if x ∈ BN (0, R) \ BN (0, σR) ,

(3.5)

where BN (0, r) denotes the N -dimensional open ball with center 0 and radius r > 0.
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It is clear that wσ,R,s belongs to W 1,p
r

(
RN

)
. Denoting by ωN the volume of the N -dimensional unit ball, an

elementary calculation shows that

‖wσ,R,s‖p
r = |s|p ωNRN

(
σN + R−p

(
1 − σN

)
(1 − σ)−p

)
+ |s|p R−p(1 − σ)−p

∫
σR≤|x|≤R

(R − |x|)p dx

< |s|p ωNRN
(
1 + R−p

(
1 − σN

)
(1 − σ)−p

) (3.6)

and

Fr(wσ,R,s) ≥ ωNRN

[
αRF (s)σN − ‖α‖L∞ max

|t|≤|s|
|F (t)|(1 − σN

)]
. (3.7)

Since σ ∈ IR,s one clearly has F(wσ,R,s) > 0 (cf. Eq. (1.1)), thus we may define

λ̃σ,R,s =
‖wσ,R,s‖p

r

pFr(wσ,R,s)
. (3.8)

P r o o f o f T h e o r e m 1.1. Let K ⊂ ]λ∗, +∞[ be a bounded set as in the hypothesis. We shall prove that for
every λ ∈ K there exist two elements uλ and vλ in W 1,p

r

(
RN

)
which verify Rλ(uλ) < 0 < Rλ(vλ), they are

critical points of Rλ (consequently, radially symmetric, weak solutions of Eq. (Pλ) in view of Propositions 2.2
and 2.1), and the sets {‖uλ‖W 1,p}λ∈K and {‖vλ‖W 1,p}λ∈K , respectively, are uniformly bounded. In particular,
the first part of Theorem 1.1 will be answered as well, choosing K = {λ} with λ > λ∗.

Thus, let us start with a set K ⊂ ]λ∗, +∞[ as was specified above. Either in the case when λ∗ = inf K
(thus the infimum in Eq. (1.3) is achieved on I+

α × I+
F ), or in the case when λ∗ < inf K, we are able to fix(

R, s̄
) ∈ I+

α × I+
F as well as σ = σ

(
R, s̄

) ∈ IR,s̄ such that

λσ,R,s̄ = min
σ∈IR,s̄

λσ,R,s̄ ≤ λ for all λ ∈ K . (3.9)

By Eqs. (1.2) and (3.6)–(3.8) it is clear that

λ̃σ,R,s̄ < λσ,R,s̄ . (3.10)

First, we prove that for every λ ∈ K we have infu∈W 1,p
r (RN ) Rλ(u) < 0. To this end, it is enough to prove

that Rλ

(
wσ,R,s̄

)
< 0, where wσ,R,s̄ is defined in Eq. (3.5). Thanks to Eqs. (3.8)–(3.10), for every λ ∈ K we

have

Rλ

(
wσ,R,s̄

)
=

1
p

∥∥wσ,R,s̄

∥∥p

r
− λFr

(
wσ,R,s̄

)
=

1
p

∥∥wσ,R,s̄

∥∥p

r

(
1 − λ

λ̃σ,R,s̄

)
< 0 .

Taking into account Propositions 3.2 and 3.3 as well as [16, Theorem 2.7], for every λ ∈ K we find an element
uλ ∈ W 1,p

r

(
RN

)
such that R′

λ(uλ) = 0 and

Rλ(uλ) = inf
u∈W 1,p

r

Rλ(u) < 0 . (3.11)

Now, we prove that for every λ ∈ K the functional Rλ has the Mountain Pass geometry. Since α ≥ 0, then
Lemma 2.4 gives

F(u) ≤ ‖α‖L1 C′′cν
∞ ‖u‖ν

W 1,p , u ∈ W 1,p
(
RN

)
. (3.12)

We take ρ > 0 to satisfy

ρ < min
{(

(sup K)p ‖α‖L1C′′cν
∞
) 1

p−ν ,
∥∥wσ,R,s̄

∥∥
r

}
.
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Consequently, by Eq. (3.12), for every λ ∈ K we have

Rλ(u) ≥ 1
p
‖u‖p

r − λ ‖α‖L1C′′cν
∞ ‖u‖ν

r

≥
(

1
p
− (sup K) ‖α‖L1 C′′cν

∞ρν−p

)
ρp ≡ η > 0 , ‖u‖r = ρ .

By construction, one has
∥∥wσ,R,s̄

∥∥
r

> ρ and from above Rλ

(
wσ,R,s̄

)
< 0 = Rλ(0). Beside of these facts,

Propositions 3.3 allows us to apply the Mountain Pass theorem (see for instance [16, Theorem 2.2]). Namely, for
every λ ∈ K there exists an element vλ ∈ W 1,p

r

(
RN

)
such that R′

λ(vλ) = 0 and Rλ(vλ) ≥ η > 0.
Now, we will prove Eq. (1.4). As far as the vλ is concerned, for every λ ∈ K the mountain pass level Rλ(vλ)

is characterized as

Rλ(vλ) = inf
g∈Γ

max
t∈[0,1]

Rλ(g(t)) , (3.13)

where

Γ =
{
g ∈ C

(
[0, 1]; W 1,p

r

(
RN

))
: g(0) = 0, g(1) = wσ,R,s̄

}
.

Let g0 : [0, 1] → W 1,p
r

(
RN

)
be defined by g0(t) = twσ,R,s̄. Since g0 ∈ Γ, by using Eq. (3.13), one has for

every λ ∈ K

Rλ(vλ) ≤ max
t∈[0,1]

Rλ(g0(t)) ≤ 1
p

∥∥wσ,R,s̄

∥∥p

r
+ (sup K) max

t∈[0,1]

∣∣Fr

(
twσ,R,s̄

)∣∣ ≡ C′′′ .

(C′′′ > 0 does not depend on λ ∈ K.) Combining the above inequality with Eq. (3.4), for every λ ∈ K it follows

‖vλ‖p
r ≤ p(sup K)C ‖α‖L1

(
c∞ ‖vλ‖r + cγ

∞ ‖vλ‖γ
r

)
+ p C′′′ .

Since 1 < γ < p, we have at once that supλ∈K ‖vλ‖r < +∞. On the other hand, since Rλ(uλ) < 0 for every
λ ∈ K (see Eq. (3.11)), a direct application of Eq. (3.4) shows that supλ∈K ‖uλ‖r < +∞ as well. Thus, relation
(1.4) is completely proved.

Suppose now that f(s) = 0 for every s ≤ 0, and let u be a weak solution of Eq. (Pλ) for some λ > 0, i.e., for
every v ∈ W 1,p

(
RN

)
∫
RN

(|∇u|p−2 ∇u∇v + |u|p−2uv
)
dx = λ

∫
RN

α(x)f(u(x))v(x) dx . (3.14)

Set S =
{
x ∈ RN : u(x) < 0

}
, and assume that S �= ∅. Since (the representation of ) u is continuous, the set S

is open. Applying Eq. (3.14) with v ≡ uS = min{u, 0} ∈ W 1,p
(
RN

)
one has

0 =
∫
RN

(|∇u|p−2 ∇u∇uS + |u|p−2 uuS

)
dx =

∫
S

(|∇u|p + |u|p) dx = ‖u‖p
W 1,p(S) ,

which contradicts the choice of the set S. This completes the proof. �
In the sequel, we are dealing with the proof of Theorem 1.2. In order to do this, we recall the following recent

critical point result.

Theorem 3.4 [4, Theorem 2.1] Let X be a separable and reflexive real Banach space, and let Φ, J : X → R
be two continuously Gâteaux differentiable functionals. Assume that there exists x0 ∈ X such that Φ(x0) =
J(x0) = 0 and Φ(x) ≥ 0 for every x ∈ X and that there exists x1 ∈ X, ρ > 0 such that

(i) ρ < Φ(x1),
(ii) supΦ(x)<ρ J(x) < ρ J(x1)

Φ(x1)
.

Further, put

a = ζρ

(
ρ

J(x1)
Φ(x1)

− sup
Φ(x)<ρ

J(x)

)−1

where ζ > 1 ,
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assume that the functional Φ − λJ is sequentially weakly lower semicontinuous, satisfies the Palais-Smale con-
dition and

(iii) lim‖x‖→+∞(Φ(x) − λJ(x)) = +∞, for every λ ∈ [0, a].
Then there is an open interval Λ ⊆ [0, a] and a number µ > 0 such that for each λ ∈ Λ, the equation

Φ′(x) − λJ ′(x) = 0 admits at least three solutions in X having norm less than µ.

Proposition 3.5 For every λ ∈ R, Rλ is sequentially weakly lower semicontinuous.

P r o o f. Since the function u �→ ‖u‖p

W 1,p
r

is sequentially weakly lower semicontinuous (see [7, Proposition

III.5]), it suffices to prove that the functional Fr is sequentially weakly continuous. To this end, let {un} be a
sequence in W 1,p

r

(
RN

)
which converges weakly to u ∈ W 1,p

r

(
RN

)
and suppose that the sequence {Fr(un)}

does not converge to Fr(u) as n → ∞. Therefore, there exist ε > 0 and a subsequence of {un}, denoted again by

{un}, such that 0 < ε ≤ |Fr(un)−Fr(u)| for every n ∈ N, and un → u strongly in L∞(RN
)

(see Proposition
2.3). By the mean value theorem and Eq. (2.1), for some θn ∈ ]0, 1[ with n large enough, one has

0 < ε ≤ ∣∣〈F ′
r(u + θn(un − u)), un − u〉W 1,p

∣∣
≤
∫
RN

α(x) |f(u(x) + θn(un(x) − u(x)))| |un(x) − u(x)| dx

≤ ‖α‖L1 max{|f(s)| : |s| ≤ ‖u‖L∞ + 1} ‖un − u‖L∞ .

But the last term tends to 0, which is a contradiction.

P r o o f o f T h e o r e m 1.2. Let X = W 1,p
r

(
RN

)
and for every u ∈ W 1,p

r

(
RN

)
put Φ(u) = 1

p ‖u‖p
r and

J(u) = Fr(u) in Theorem 3.4. Thus, Rλ = Φ − λJ .
By hypotheses, there exists

(
R, s̄

) ∈ I+
α × I+

F as well as σ = σ
(
R, s̄

) ∈ IR,s̄ such that

λσ,R,s̄ = min
σ∈IR,s̄

λσ,R,s̄ = λ∗ .

Similarly as in Eq. (3.10), we have

λ̃σ,R,s̄ < λσ,R,s̄ . (3.15)

By Eq. (3.12) and ν > p one readily has that

lim
ρ→0+

sup{Fr(u) : ‖u‖p
r < pρ}

ρ
= 0 .

In view of the above limit, as well as Eqs. (3.5), (3.8) and (3.15), we may fix a number ρ > 0 so small that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

pρ <
∥∥wσ,R,s̄

∥∥p

r
,

sup
{Fr(u) : ‖u‖p

r < pρ
}

ρ
<

1
λ̃σ,R,s̄

,

(1 + ρ)

(
1

λ̃σ,R,s̄

− sup{Fr(u) : ‖u‖p
r < pρ}

ρ

)−1

< λσ,R,s̄ .

Moreover, in Theorem 3.4 set x0 = 0, x1 = wσ,R,s̄, ζ = 1 + ρ and

a = (1 + ρ)

(
1

λ̃σ,R,s̄

− sup{Fr(u) : ‖u‖p
r < pρ}

ρ

)−1

.

On account of Propositions 3.2, 3.3 and 3.5, the assumptions of Theorem 3.4 are fulfilled.
Thus, there exists an open interval Λ ⊆ [0, a] ⊂ [0, λσ,R,s̄

]
= [0, λ∗] and a number µ > 0 such that for each

λ ∈ Λ the functional Rλ = Φ − λJ admits at least three critical points in W 1,p
r

(
RN

)
having norm less than µ.

Thus, it remains to apply again Propositions 2.2 and 2.1, respectively. �
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