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PERTURBED NEUMANN PROBLEMS WITH MANY SOLUTIONS

Alexandru Kristály

Department of Economics, Babeş-Bolyai University, Cluj-Napoca, Romania

� Given f , g : [0,∞) → � two continuous nonlinearities with f (0) = g (0) = 0 and
f having a suitable oscillatory behavior at zero or at infinity, we prove by a direct method that
for every k ∈ �, there exists �k > 0 such that the problem




−�pu + �(x)up−1 = f (u) + �g (u) in �,

�u
�n

= 0 on ��,

has at least k distinct nonnegative weak solutions in W 1,p(�) whenever |�| ≤ �k � We also give
various W 1,p - and L∞-estimates of the solutions. No growth assumption on g is needed, and
� ∈ L∞(�) may be sign-changing or even negative depending on the rate of the oscillation of f .

Keywords Arbitrarily many solutions; Oscillatory nonlinearity; Perturbed Neumann
problem.

AMS Subject Classification 35J65; 35J20; 35J25.

1. INTRODUCTION AND MAIN RESULTS

Very recently, in [3] the authors studied the Neumann problem



−�pu + �(x)|u|p−2u = �(x)f (u) in �,

�u
�n

= 0 on ��,
(P0)

where � ⊂ �N is a bounded open domain with C 2-boundary ��,
1< p <∞, �p(·) = div(|�(·)|p−2�(·)) is the p-Laplacian operator, � is the
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outer unit normal to ��, f ∈ L∞
loc([0,∞)) with f (0) = 0, and �, � ∈ L∞(�)

with essinf�� > 0. Because f is not necessarily continuous, problem (P0)
has been reformulated into a hemivariational inequality, and the existence
of infinitely many nonnegative solutions for (P0) are guaranteed whenever
f has a suitable oscillatory behavior at the origin or at infinity (see
hypotheses (H f

0 ) and (H f
∞) below).

The goal of the current paper is to treat the perturbed problem



−�pu + �(x)|u|p−2u = f (u) + �g (u) in �,

�u
�n

= 0 on ��,
(P�)

where f is continuous and verifies the same conditions as in [3], and
g : [0,∞) → � is an arbitrarily continuous function with g (0) = 0. Having
infinitely many solutions for problem (P0) cf. [3], we expect to find
still many solutions for the perturbed problem (P�) whenever |�| is small
enough. The purpose of the current paper is to show that this is indeed
the case. Here, a solution for (P�) is meant as a weak solution in W 1,p(�)

in the usual sense.
In the sequel, we state our results, recalling simultaneously the

hypotheses and results from [3] in the smooth context (and taking � = 1,
see (P0)). If we denote by F (s) = ∫ s

0 f (t)dt , s ≥ 0, we assume

(
H f

0

)
lim sups→0+

pF (s)
sp >

∫
� �(x)dx
meas(�)

≥ essinf�� > lim infs→0+ f (s)
sp−1 �

Note that (H f
0 ) implies an oscillatory behavior of f at zero.

Theorem A [3, Theorem 1.2]. Let � ∈ L∞(�) and a continuous function
f : [0,∞) → � with f (0) = 0, fulfilling (H f

0 )� Then (P0) admits a sequence of
distinct nonnegative solutions 	u0

i 
 in W 1,p(�) ∩ L∞(�) such that

lim
i→∞

‖u0
i ‖W 1,p = lim

i→∞
‖u0

i ‖∞ = 0� (1.1)

Here, the norms ‖ · ‖W 1,p and ‖ · ‖L∞ are the usual ones on the spaces
W 1,p(�) and L∞(�), respectively. The first main result of the current
paper reads as follows.

Theorem 1.1. Let � ∈ L∞(�) and two continuous functions f , g :
[0,∞)→� with f (0) = g (0) = 0. Assume that (H f

0 ) holds.
Then, for every k ∈ �, there exists �0

k > 0 such that (P�) has at least k distinct
nonnegative solutions in W 1,p(�) ∩ L∞(�) whenever � ∈ [−�0

k , �
0
k]� Moreover,
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if the (first k) solutions are denoted by u0
i ,�, i = 1, k, then

‖u0
i ,�‖L∞ <

1
i

and ‖u0
i ,�‖W 1,p <

1
i

for any i = 1, k; �∈ �−�0
k , �

0
k�� (1.1′)

Remark 1.2. It is useful to notice the concordance between relations (1.1)
and (1.1′), respectively. Moreover, no growth assumption is required on g .

Dealing with the case when f oscillates at infinity, in [3] is required a
subcritical growth condition at infinity for f ; namely

(fp∗) lim sups→∞
|f (s)|
sq−1 < ∞ for some q ∈ (p, p∗)�

Here, p∗ = pN /(N − p) if N > p and p∗ = ∞ if p ≥ N � The counterpart of
the hypothesis (H f

0 ) at infinity is

(
H f

∞
)
lim sups→∞

pF (s)
sp >

∫
� �(x)dx
meas(�)

≥ essinf�� > lim infs→∞
f (s)
sp−1 �

Theorem B [3, Theorem 1.3]. Let � ∈ L∞(�) and a continuous function
f : [0,∞) → � with f (0) = 0, fulfilling (fp∗) and (H f

∞)� Then (P0) admits a
sequence of distinct nonnegative solutions 	u∞

i 
 in W 1,p(�) ∩ L∞(�) such that

lim
i→∞

‖u∞
i ‖W 1,p = lim

i→∞
‖u∞

i ‖∞ = ∞� (1.2)

In our second result, we can avoid the subcritical growth condition (fp∗)
as follows.

Theorem 1.3. Let � ∈ L∞(�) and two continuous functions f , g :
[0,∞)→� with f (0) = g (0) = 0. Assume that (H f

∞) holds.
Then, for every k ∈ �, there exists �∞

k > 0 such that (P�) has at least k distinct
nonnegative solutions in W 1,p(�) ∩ L∞(�) whenever � ∈ [−�∞

k , �
∞
k ]. Moreover,

if the (first k) solutions are denoted by u∞
i ,�, i = 1, k, then

‖u∞
i ,�‖L∞ > i − 1 for any i = 1, k; � ∈ �−�∞

k , �
∞
k �� (1.2′)

The proofs of Theorems A and B play crucial roles in Theorems 1.1
and 1.3, respectively; in fact, the proofs are based on a careful analysis of
two special sequences involving the energy functional associated to (P�).
For details, see Sections 3 and 4.

We give two simple functions for f fulfilling the hypotheses of
Theorems 1.1 and 1.3, respectively.

(a) Let �, �, 
 ∈ � such that 0 < � < 1 < � + �, and 
 ∈ (0, 1)� Then,
the function f : [0,∞) → � defined by f (0) = 0 and f (s) = s�(
 + sin s−�),
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s > 0, verifies (H f
0 ) with p = 2� Note that � may be any negative or

sign-changing function that belongs to L∞(�)�

(b) Let �, �, 
 ∈ � such that 1 < �, |� − �| < 1, and 
 ∈ (0, 1)� Then,
the function f : [0,∞) → � defined by f (s) = s�(
 + sin s�) verifies the
hypotheses (H f

∞) with p = 2� The same remark is valid for � as before.

Equations involving oscillatory terms usually produce infinitely many
solutions. This phenomenon has been exploited by several authors in
various contexts: for Neumann boundary problems, see Ricceri [7], Faraci
and Kristály [2], Kristály and Motreanu [3], for Dirichlet boundary
problems, see Anello and Cordaro [1], Omari and Zanolin [5], and Saint
Raymond [8].

2. AN AUXILIARY RESULT

In this section, we consider the problem



−�pu + �(x)|u|p−2u = h(u) in �,

�u
�n

= 0 on ��,
(P)

assuming that � ∈ L∞(�) with essinf�� > 0 and

(h1) h : [0,∞) → � is a continuous, bounded function such that h(0) = 0;
(h2) there are 0 < a < b such that h(s) ≤ 0 for all s ∈ [a, b]�

Because of (h1), we may extend h continuously to the whole �, taking
h(s) = 0 for all s ≤ 0�

We may introduce the energy functional � : W 1,p(�) → � associated
with problem (P), which is defined by

�(u) = 1
p
‖u‖p

� −
∫
�

H (u(x))dx , u ∈ W 1,p(�),

where

‖u‖� =
( ∫

�

|�u(x)|p dx +
∫
�

�(x)|u(x)|p dx
)1/p

and H (s) = ∫ s
0 h(t)dt , s ∈ �� Note that the norms ‖ · ‖� and ‖ · ‖W 1,p are

equivalent, as essinf�� > 0. Standard arguments show that � is well-defined
and is of class C 1 on W 1,p(�). Moreover, its critical points are weak
solutions for problem (P).
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We consider the number b ∈ � from (h2), and we introduce the
level-set

W b = 	u ∈ W 1,p(�) : ‖u‖L∞ ≤ b
�

Now, we are ready to state the main result of this section.

Theorem 2.1. Assume that (h1), (h2) hold. Then

(i) the functional � is bounded from below on W b and its infimum is attained
at ũ ∈ W b;

(ii) ũ(x) ∈ [0, a] for a.e. x ∈ �;
(iii) ũ is a weak solution of (P).

Proof. (i) For every u ∈ W b , we have

�(u) = 1
p
‖u‖p

� −
∫
�

H (u(x))dx ≥ −meas(�)max
[−b,b]

H > −∞�

Thus, � is bounded from below on W b . On the other hand, due to
the theorem of Rellich–Kondrachov, � is sequentially weakly continuous.
Because W b is convex and closed, thus weakly closed in W 1,p(�), the
infimum of � on W b is attained at an element ũ ∈ W b .

(ii) Let W = 	x ∈ � : ũ(x)� [0, a]
 and suppose that meas(W )> 0�
Define the function 
(s) = min(s+, a) where s+ = max(s, 0), and set
w̃ = 
 ◦ ũ. Due to Marcus and Mizel [6], w̃ belongs to W 1,p(�) (as 
 is
Lipschitz continuous). Moreover, w̃ ∈ W b . We introduce the following two
sets

W1 = 	x ∈ W : ũ(x) < 0
 and W2 = 	x ∈ W : ũ(x) > a
�

Then, W = W1 ∪ W2, and we have that w̃(x) = ũ(x) for all x ∈ �\W ,
w̃(x) = 0 for all x ∈ W1, and w̃(x) = a for all x ∈ W2. Furthermore,

�(w̃) − �(ũ)

= −1
p

∫
W

|� ũ|p dx + 1
p

∫
W
�(x)[|w̃|p − |ũ|p]dx −

∫
W

[H (w̃) − H (ũ)]dx

= −1
p

∫
W

|� ũ|p dx − 1
p

∫
W1

�(x)|ũ|p dx + 1
p

∫
W2

�(x)[ap − ũp]dx

−
∫
W1

[H (0) − H (ũ(x))]dx −
∫
W2

[H (a) − H (ũ(x))]dx �
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First,
∫
W1

[H (0) − H (ũ(x))]dx = 0� Then, by using the mean value theorem
and hypotheses (h2), we obtain

∫
W2

[H (a) − H (ũ(x))]dx ≥ 0�

Therefore, every term of the above expression is nonpositive. But, taking
into account that �(w̃) ≥ �(ũ) = infW b �, every term should be zero. In
particular,

∫
W1

�(x)|ũ|p =
∫
W2

�(x)[ap − ũp] = 0�

Because essinf�� > 0, the above relations imply that meas(W1) =
meas(W2) = 0, so meas(W ) = 0, contradicting the initial assumption.

(iii) A direct consequence of (i) is that

�′(ũ)(w − ũ) ≥ 0, ∀w ∈ W b ,

that is,∫
�

[|� ũ|p−2� ũ�(w − ũ) + �(x)ũp−1(w − ũ)
] −

∫
�

h(ũ)(w − ũ) ≥ 0,

∀w ∈ W b �

Let us define the function 
(s) = sgn(s)min(|s|, b), and fix � > 0 and
v ∈ W 1,p(�) arbitrarily. Because 
 is Lipschitz continuous, w = 
 ◦ (ũ + �v)
belongs to W 1,p(�), see Marcus and Mizel [6]. The explicit expression of
w is

w(x) =




−b, if x ∈ 	ũ + �v < −b


ũ(x) + �v(x), if x ∈ 	−b ≤ ũ + �v < b


b, if x ∈ 	b ≤ ũ + �v
�

Consequently, w ∈ W b . Considering w as a test function in the above
inequality, we obtain

0 ≤ −
∫
	ũ+�v<−b


|� ũ|p −
∫
	ũ+�v<−b


�(x)ũp−1(b + ũ) +
∫
	ũ+�v<−b


h(ũ)(b + ũ)

+ �

∫
	−b≤ũ+�v<b


|� ũ|p−2� ũ�v + �

∫
	−b≤ũ+�v<b


�(x)ũp−1v − �

∫
	−b≤ũ+�v<b


h(ũ)v

−
∫
	b≤ũ+�v


|� ũ|p +
∫
	b≤ũ+�v


�(x)ũp−1(b − ũ) −
∫
	b≤ũ+�v


h(ũ)(b − ũ)�



1120 A. Kristály

After a suitable rearrangement of the terms in the above inequality, we
obtain

0 ≤ �

∫
�

|� ũ|p−2� ũ�v + �

∫
�

�(x)ũp−1v − �

∫
�

h(ũ)v −
∫
	ũ+�v<−b


|� ũ|p

−
∫
	b≤ũ+�v


|� ũ|p +
∫
	ũ+�v<−b


[h(ũ) − �(x)ũp−1](b + ũ + �v)

+
∫
	b≤ũ+�v


[h(ũ) − �(x)ũp−1](−b + ũ + �v)

− �

∫
	ũ+�v<−b


|� ũ|p−2� ũ�v − �

∫
	b≤ũ+�v


|� ũ|p−2� ũ�v�

First, due to (ii), we have
∫
	ũ+�v<−b


[h(ũ) − �(x)ũp−1](b + ũ + �v)

≤ −�

∫
	ũ+�v<−b


[
max
s∈[0,a]

|h(s)| + ap−1�(x)
]
v�

A similar estimation shows that∫
	b≤ũ+�v


[h(ũ) − �(x)ũp−1](−b + ũ + �v)

≤ �

∫
	b≤ũ+�v


[
max
s∈[0,a]

|h(s)| + ap−1�(x)
]
v�

Taking into account the above estimates and dividing by � > 0, we
obtain that

0 ≤
∫
�

|� ũ|p−2� ũ�v +
∫
�

�(x)ũp−1v −
∫
�

h(ũ)v

−
∫
	ũ+�v<−b


(
max
s∈[0,a]

|h(s)|v + ap−1�(x)v + |� ũ|p−2� ũ�v
)

−
∫
	b≤ũ+�v


(
max
s∈[0,a]

|h(s)|v + ap−1�(x)v + |� ũ|p−2� ũ�v
)
�

Now, letting � → 0+, and taking into account that 0 ≤ ũ(x) ≤ a a.e.
x ∈ �, we have meas(	ũ + �v < −b
) → 0 and meas(	b ≤ ũ + �v
) → 0,
respectively. Consequently, the above inequality reduces to

0 ≤
∫
�

|� ũ|p−2� ũ�v +
∫
�

�(x)ũp−1v −
∫
�

h(ũ)v�
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Because v ∈ W 1,p(�) was arbitrarily chosen, ũ is a nonnegative solution
for (P).

3. PROOF OF THEOREM 1.1

Because of (H f
0 ), one can fix c0 ∈ � such that

essinf�� > c0 > lim inf
s→0+

f (s)
sp−1

� (3.1)

In particular, there is a sequence 	si
 ⊂ (0, 1) converging (decreasingly)
to 0, such that

f (si) < c0s
p−1
i � (3.2)

Let us define the functions

j(s) = f (s) − c0s
p−1
+ and J (s) =

∫ s

0
j(t)dt , s ∈ � (3.3)

and �0(x) = �(x) − c0, x ∈ �.
Because j(si) < 0 (see (3.2)), and using the continuity of j and g as

well as hypothesis (H f
0 ), we may fix the positive sequences 	ai
i , 	bi
i , 	s̃i
i ,

and 	�i
i such that for all i ∈ �,

bi+1 < ai < si < bi < 1; (3.4)

s̃i ≤ bi ≤
{
1
i
,

min(1, essinf��0)
pipmeas(�)�max[0,1] |f | + max[0,1] |g | + |c0| + 1]

}
; (3.5)

j(s) + �g (s) ≤ 0 for all s ∈ [ai , bi] and � ∈ [−�i , �i]; (3.6)

pJ (s̃i)

s̃ pi
>

∫
�
�(x)dx

meas(�)
− c0� (3.7)

In particular, we have limi→∞ ai = limi→∞ bi = 0� For every i ∈ �,
we define the truncation functions ji , gi : [0,∞) → � by

ji(s) = j(min(s, bi)) and gi(s) = g (min(s, bi))� (3.8)

Because j(0) = g (0) = 0, we may extend continuously the functions ji
and gi to the whole real line, taking 0 for negative values. For every s ∈ �
and i ∈ �, let Ji(s) = ∫ s

0 ji(t)dt and Gi(s) = ∫ s
0 gi(t)dt .

For every i ∈ � and � ∈ [−�i , �i], the function h0
i ,� : [0,∞) → �

defined by h0
i ,� = ji + �gi is continuous, bounded, and h0

i ,�(0) = 0� On
account of relations (3.6) and (3.8), we have h0

i ,�(s) ≤ 0 for all s ∈ [ai , bi].
Moreover, essinf��0 = essinf�� − c0 > 0, see (3.1). Thus, we may apply
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Theorem 2.1 to the function h0
i ,� obtaining that for every i ∈ � and

� ∈ [−�i , �i], the problem



−�pu + �0(x)|u|p−2u = h0
i ,�(u) in �,

�u
�n

= 0 on ��,
(P0

i ,�)

has a weak solution u0
i ,� ∈ W 1,p(�) such that

u0
i ,� ∈ [0, ai] for a.e. x ∈ �; (3.9)

u0
i ,� is the infimum of the functional ��

i on W bi , (3.10)

where

��
i (u) = 1

p
‖u‖p

�0
−

∫
�N

[Ji(u) + �Gi(u)], u ∈ W 1,p(�)� (3.11)

Because of (3.3), (3.8), (3.9) and the definition of the function �0, the
element u0

i ,� is a weak solution not only for (P0
i ,�) but also for our problem

(P�). Consequently, it remains to prove that for every k ∈ �, there are at
least k distinct elements u0

i ,� verifying the required properties.
As we pointed out in the Introduction, the proof of the above fact

is based on Theorem A (i.e., on the unperturbed case); consequently,
we recall some partial results from [3]. To do this, take for abbreviation
u0
i = u0

i ,0 and let ws̃i ∈ W 1,p(�), ws̃i (x) = s̃i (x ∈ �) for every i ∈ �. The
core of Theorem A, which is based on (3.7), is to prove the relations

�0
i (u

0
i ) ≤ �0

i (ws̃i ) < 0 for all i ∈ �; (3.12)

lim
i→∞

�0
i (u

0
i ) = lim

i→∞
�0

i (ws̃i ) = 0, (3.13)

see Propositions 3.1 and 3.3 from [3], respectively. In particular, because of
(3.8) and (3.9), we observe that �0

i (u
0
i ) = �0

1(u
0
i ) for all i ∈ �� Combining

this relation with (3.12) and (3.13), we see that the sequence 	u0
i 
i contains

infinitely many distinct elements.
Up to a subsequence, we may consider a sequence 	
i
i with negative

terms such that


i < �0
i (u

0
i ) ≤ �0

i (ws̃i ) < 
i+1� (3.14)

Let us denote

�′
i = 
i+1 − �0

i (ws̃i )

|Gi(s̃i)|meas(�) + 1
and �′′

i = �0
i (u

0
i ) − 
i

maxs∈[0,ai ] |Gi(s)|meas(�) + 1
, i ∈ ��
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Fix k ∈ �. Because of (3.14),

�0
k = min(1, �1, � � � , �k , �′

1, � � � , �
′
k , �

′′
1, � � � , �

′′
k) > 0�

Then, for every i ∈ 	1, � � � , k
 and � ∈ [−�0
k , �

0
k], we have

��
i (u

0
i ,�) ≤ ��

i (ws̃i ) (see (3.10) and (3.5))

= �0
i (ws̃i ) − �

∫
�

Gi(ws̃i )

< 
i+1, (see the choice of �′
i)

and taking into account that u0
i ,� belongs to W bi , and u0

i is the minimum
point of �0

i over the set W bi , see relation (3.10) for � = 0, we have

��
i (u

0
i ,�) = �0

i (u
0
i ,�) − �

∫
�

Gi(u0
i ,�)

≥ �0
i (u

0
i ) − �

∫
�

Gi(u0
i ,�)

> 
i � (see the choice of �′′
i and (3.9))

In conclusion, for every i ∈ 	1, � � � , k
 and � ∈ [−�0
k , �

0
k], we have


i < ��
i (u

0
i ,�) < 
i+1,

thus

��
1(u

0
1,�) < · · · < ��

k (u
0
k,�)�

Let us observe that u0
i ,� ∈ W b1 for every i ∈ 	1, � � � , k
, so ��

i (u
0
i ,�) = ��

1(u
0
i ,�),

see relation (3.8). From above, we obtain that for every � ∈ [−�0
k , �

0
k],

��
1(u

0
1,�) < · · · < ��

1(u
0
k,�)�

In particular, this fact shows that the elements u0
1,�, � � � ,u

0
k,� are distinct

whenever � ∈ [−�0
k , �

0
k].

Now, we prove (1.1’). The first relation easily follows by (3.9) and (3.5).
To check the second relation, we observe that for every i ∈ 	1, � � � , k
 and
� ∈ [−�0

k , �
0
k],

��
1(u

0
i ,�) = ��

i (u
0
i ,�) < 
i+1 < 0�
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Consequently, for every i ∈ 	1, � � � , k
 and � ∈ [−�0
k , �

0
k], by using a mean

value theorem, we obtain

1
p
‖u0

i ,�‖p

W 1,p

≤ 1
p
�min(1, essinf��0)�

−1 ‖u0
i ,�‖p

�0

< �min(1, essinf��0)�
−1

∫
�

[Ji(u0
i ,�) + �Gi(u0

i ,�)]

≤ �min(1, essinf��0)�
−1 meas(�)

[
max
[0,1]

|f | + max
[0,1]

|g | + |c0|ap−1
i

]
ai

(see (3.3), (3.4), (3.9) and �0
k ≤ 1)

<
1
pip

, (see (3.4) and (3.5))

which concludes the proof.

4. PROOF OF THEOREM 1.3

The proof of this part is similar to that of Theorem 1.1. Because of
(H f

∞), one can fix c∞ ∈ � such that

essinf�� > c∞ > lim inf
s→∞

f (s)
sp−1

� (4.1)

So, there is a sequence 	si
 ⊂ (0,∞) converging increasingly to +∞, such
that

f (si) < c∞sp−1
i � (4.2)

We define the functions

j(s) = f (s) − c∞sp−1
+ and J (s) =

∫ s

0
j(t)dt , s ∈ � (4.3)

and �∞(x) = �(x) − c∞, x ∈ �. Because j(si) < 0 (see (4.2)), and using the
continuity of j and g as well as hypothesis (H f

∞), we may fix a subsequence
	smi 
i of 	si
i and the positive sequences 	ai
i , 	bi
i , 	s̃i
i , and 	�i
i such that
for all i ∈ �,

i ≤ ai < smi < bi < ai+1; (4.4)

s̃i ≤ bi ; (4.5)

j(s) + �g (s) ≤ 0 for all s ∈ [ai , bi] and � ∈ [−�i , �i]; (4.6)
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pJ (s̃i)

s̃ pi
>

∫
�
�(x)dx

meas(�)
− c∞, (4.7)

and limi→∞ s̃i = ∞�
In the same way as we did in (3.8), let us define the truncation

functions ji , gi : [0,∞) → � by

ji(s) = j(min(s, bi)) and gi(s) = g (min(s, bi))� (4.8)

Because ji(0) = gi(0) = 0, we may extend continuously the functions ji
and gi to the whole real line, taking 0 for negative values. For every s ∈ �
and i ∈ �, let Ji(s) = ∫ s

0 ji(t)dt and Gi(s) = ∫ s
0 gi(t)dt .

For every i ∈ � fixed and � ∈ [−�i , �i], the function h∞
i ,� : [0,∞)→�

defined by h∞
i ,� = ji + �gi is continuous, bounded, and h∞

i ,�(0) = 0� On
account of relations (4.5) and (4.8), one has h∞

i ,�(s) ≤ 0 for all s ∈ [ai , bi].
Consequently, we may apply Theorem 2.1 to the function h∞

i ,� obtaining
that for every i ∈ � and � ∈ [−�i , �i], the problem




−�pu + �∞(x)|u|p−2u = h∞
i ,�(u) in �,

�u
�n

= 0 on ��,
(P∞

i ,�)

has a weak solution u∞
i ,� ∈ W 1,p(�) such that

u∞
i ,� ∈ [0, ai] for a.e. x ∈ �; (4.9)

u∞
i ,� is the infimum of the functional ��

i on W bi , (4.10)

where ��
i is defined exactly as in (3.11). Because of (4.8) and (4.9), u∞

i ,�
is a weak solution not only for (P∞

i ,�) but also for the initial problem (P�)�
Consequently, we have to prove that for every k ∈ �, there are at least k
distinct elements u∞

i ,� verifying (1.2′) when � belongs to a certain interval
around the origin.

Let u∞
i = u∞

i ,0. The crucial step of Theorem B in [3], see also (4.5) and
(4.7), is

lim
i→∞

�0
i (u

∞
i ) = lim

i→∞
�0

i (ws̃i ) = −∞, (4.11)

where ws̃i denotes the constant function with value s̃i . In particular,
it follows that the sequence 	u∞

i 
i contains infinitely many distinct
elements. So, up to a subsequence, we can fix a sequence 	
i
i with
negative terms such that


i+1 < �0
i (u

∞
i ) ≤ �0

i (ws̃i ) < 
i � (4.12)
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Let us denote

�′
i = 
i − �0

i (ws̃i )

|Gi(s̃i)|meas(�) + 1
and �′′

i = �0
i (u

∞
i ) − 
i+1

maxs∈[0,ai ] |Gi(s)|meas(�) + 1
, i ∈ ��

Fix k ∈ �. Because of (4.12), we have

�∞
k = min(1, �1, � � � , �k , �′

1, � � � , �
′
k , �

′′
1, � � � , �

′′
k) > 0�

Then, for every i ∈ 	1, � � � , k
 and � ∈ [−�∞
k , �

∞
k ] we have

��
i (u

∞
i ,�) ≤ ��

i (ws̃i ) (see (4.10))

= �0
i (ws̃i ) − �

∫
�

Gi(ws̃i )

< 
i , (see the choice of �′
i)

and because u∞
i ,� belongs to W bi , and u∞

i is the minimum point of �0
i on

the set W bi , see relation (4.10) for � = 0, we have

��
i (u

∞
i ,�) = �0

i (u
∞
i ,�) − �

∫
�

Gi(u∞
i ,�)

≥ �0
i (u

∞
i ) − �

∫
�

Gi(u∞
i ,�)

> 
i+1� (see the choice of �′′
i and (4.9))

Thus, for every i ∈ 	1, � � � , k
 and � ∈ [−�∞
k , �

∞
k ], we have


i+1 < ��
i (u

∞
i ,�) < 
i �

In particular,

��
k (u

∞
k,�) < · · · < ��

1(u
∞
1,�) < 0� (4.13)

By construction, u∞
i ,� ∈ W bk for every i ∈ 	1, � � � , k
, see (4.4); thus,

��
i (u

∞
i ,�) = ��

k (u
∞
i ,�), see relation (4.8). Therefore, (4.13) implies that for

every � ∈ [−�∞
k , �

∞
k ],

��
k (u

∞
k,�) < · · · < ��

k (u
∞
1,�) < 0�

In particular, the elements u∞
1,�, � � � ,u

∞
k,� are distinct whenever � ∈ [−�∞

k , �
∞
k ].

Now, we prove relation (1.2′). Fix � ∈ [−�∞
k , �

∞
k ]. First of all, because

��
1(u

∞
1,�) < 0 = ��

1(0), then ‖u∞
1,�‖L∞ > 0, which proves relation (1.2′) for

i = 1� We further prove that

‖u∞
i ,�‖L∞ > ai−1 for all i ∈ 	2, � � � , k
� (4.14)
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Let us assume the contrary, i.e., there exists an element i0 ∈ 	2, � � � , k

such that ‖u∞

i0,�
‖L∞ ≤ ai0−1. Because ai0−1 < bi0−1, then u∞

i0,�
∈ W bi0−1 � Thus,

on account of (4.10) and (4.8), we have

��
i0−1(u

∞
i0−1,�) = min

W
bi0−1

��
i0−1 ≤ ��

i0−1(u
∞
i0,�

) = ��
i0
(u∞

i0,�
),

which contradicts (4.13). Thus, (4.14) holds true, which can be combined
with (4.4), obtaining relation (1.2′). The proof is concluded.
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