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Multiple solutions are obtained for a variational inequality defined on the half line (0,∞).
Our approach is based on a key embedding result as well as on the non-smooth critical
point theory for Szulkin-type functionals.
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1. Introduction

Variational inequalities either on bounded or unbounded domains describe real life phenomena from Mechanics and
Mathematical Physics. A comprehensive monograph dealing with various forms of variational inequalities is due to
Duvaut–Lions [1].Motivated also by somemechanical problemswhere certain non-differentiable termperturbs the classical
function, Panagiotopoulos [2] developed the so-called theory of hemivariational inequalities; see also Motreanu–Rădulescu
[3].
The aim of the present paper is to study a variational inequality which is defined on the half line (0,∞) by exploiting

variational arguments described below. The natural functional space we are dealing with is the well-known Sobolev space
W 1,p(0,∞), p > 1. Since the domain is not bounded, the continuous embeddingW 1,p(0,∞) ↪→ L∞(0,∞) is not compact.
Moreover, since the domain is one-dimensional, the compactness cannot be regained from a symmetrization argument as in
Esteban [4], Esteban–Lions [5], Kobayashi–Ôtani [6], Kristály [7]. However, bearing in mind a specific construction from [5],
it is convenient to introduce the closed, convex cone

K = {u ∈ W 1,p(0,∞) : u ≥ 0, u is nonincreasing on (0,∞)}.
The main result of Section 2 is to prove that the embeddingW 1,p(0,∞) ↪→ L∞(0,∞) transforms the closed bounded sets
from K into compact sets, p ∈ (1,∞). This fact will be exploited (particularly, for p = 2) to obtain nontrivial solutions for
a variational inequality defined on (0,∞), involving concave–convex nonlinearities. To be more precise, we consider the
problem, denoted by (Pλ): Find (u, λ) ∈ K × (0,∞) such that

Au(v − u)− λ
∫
∞

0
a(x)|u(x)|q−2u(x)(v(x)− u(x))dx−

∫
∞

0
b(x)f (u(x))(v(x)− u(x))dx ≥ 0, ∀v ∈ K ,

where

Au(v − u) =
∫
∞

0
u′(x)(v′(x)− u′(x))dx+

∫
∞

0
u(x)(v(x)− u(x))dx,

and q ∈ (1, 2), a, b ∈ L1(0,∞) and f : R→ R has a suitable growth.
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By using the Ekeland variational principle and a non-smooth version of the Mountain Pass theorem for Szulkin-type
functionals, we are able to guarantee the existence of λ0 > 0 such that (Pλ) has two nontrivial solutions whenever
λ ∈ (0, λ0).
The structure of the paper is as follows. In the next section we prove a compactness result; in Section 3 we recall some

elements from the non-smooth critical point theory for Szulkin-type functionals; in Section 4 we state our main theorem
and we prove some auxiliary results; and, in Section 5 we prove our main theorem.

2. A compactness result on (0, ∞)

We endow the spaceW 1,p(0,∞) by its natural norm

‖u‖ =
[∫
∞

0
|u|p +

∫
∞

0
|u′|p

]1/p
,

and the space L∞(0,∞) by the standard sup-norm. The main result of this section is as follows.

Proposition 2.1. Let p ∈ (1,∞). The embedding W 1,p(0,∞) ↪→ L∞(0,∞) transforms the closed bounded sets from K into
compact sets.
Proof. We notice that every function u ∈ W 1,p(0,∞) (p > 1) admits a continuous representation, see Brézis [8]; in what
follows, we will replace u by this element. It is enough to consider a bounded sequence {un} in K and prove that there is a
subsequence of it which converges strongly in L∞(0,∞). Taking a subsequence if necessary we may assume that un → u
weakly inW 1,p(0,∞) for some u ∈ W 1,p(0,∞). Moreover, since K is strongly closed and convex, then it is weakly closed;
in particular u ∈ K .
Let us fix y > 0. Then

|un(y)− u(y)|py ≤ 2p[upn(y)+ u
p(y)]y

≤ 2p
∫ y

0
[upn(x)+ u

p(x)]dx

< 2p[‖un‖
p
W1,p
+ ‖u‖p

W1,p
].

Since {un} is bounded inW 1,p(0,∞), dividing by y > 0 the above inequality, then for every ε > 0 there exitsRε > 0 such that

|un(y)− u(y)| < 2[‖un‖
p
W1,p
+ ‖u‖p

W1,p
]
1/py−1/p < ε/2

for every y > Rε and for every n ∈ N. Thus

‖un − u‖L∞(Rε ,∞) < ε, ∀n ∈ N. (2.1)

On the other hand, by Rellich theorem, W 1,p(0, Rε) ↪→ C0[0, Rε](p > 1) is compact. Since un ⇀ u in W 1,p(0,∞), in
particular, un → u (strongly) in C0[0, Rε], up to a subsequence, i.e., there exists nε ∈ N such that

‖un − u‖C0[0,Rε ] < ε, ∀n ≥ nε.

Combining this fact with (2.1), we obtain

‖un − u‖L∞(0,∞) < ε, ∀n ≥ nε,

and thus the claim is proven. �

3. Szulkin-type functionals

Let X be a real Banach space and X∗ its dual. Let E : X → R be a functional of class C1 and let ψ : X → R ∪ {+∞}
be a proper (i.e. 6≡ +∞), convex, lower semicontinuous function. Then, I = E + ψ is a Szulkin-type functional, see [9]. An
element u ∈ X is called a critical point of I = E + ψ if

E ′(u)(v − u)+ ψ(v)− ψ(u) ≥ 0 for all v ∈ X, (3.1)
or equivalently,

0 ∈ E ′(u)+ ∂ψ(u) in X∗,
where ∂ψ(u) stands for the subdifferential of the convex functional ψ at u ∈ X .

Proposition 3.1 ([9, p. 80]). Every local minimum point of I = E + ψ is a critical point of I in the sense of (3.1).

Definition 3.1. The functional I = E + ψ satisfies the Palais–Smale condition at level c ∈ R, (shortly, (PSZ)c-condition) if
every sequence {un} ⊂ X such that limn I(un) = c and

〈E ′(un), v − un〉X + ψ(v)− ψ(un) ≥ −εn‖v − un‖ for all v ∈ X,

where εn → 0, possesses a convergent subsequence.
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The following version of the Mountain Pass theorem will be used in Section 5.1.

Theorem 3.1. Let X be a Banach space, I = E + ψ : X → R ∪ {+∞} a Szulkin-type functional and we assume that
(i) I(x) ≥ α for all ‖x‖ = ρ with α, ρ > 0, and I(0) = 0;
(ii) there is e ∈ X with ‖e‖ > ρ and I(e) ≤ 0.
If I satisfies the (PSZ)c-condition for

c = inf
γ∈Γ

max
t∈[0,1]

I(γ (t)),

Γ = {γ ∈ C([0, 1], X) : γ (0) = 0, γ (1) = e},

then c is a critical value of I and c ≥ α.

4. Main theorem and related results

Let f : R→ R be a continuous function. We denote by F(s) =
∫ s
0 f (t)dt . We assume that

(f1): There exists p > 2 such that f (s) = O(|s|p−1) as s→ 0.
(f2): There exists ν > p such that
νF(s)− f (s)s ≤ 0, ∀s ∈ R.

(f3): There exists R > 0 such that
max
s∈[0,R]

F(s) > 0.

We shall prove the following theorem which represents the main result of this paper.

Theorem 4.1. Let f : R→ R be a continuous function which satisfies (f1)– (f3), q ∈ (1, 2), and a, b ∈ L1(0,∞)with a, b > 0.
Then there exists λ0 > 0 such that (Pλ) has at least two nontrivial, distinct solutions u1λ, u

2
λ ∈ K whenever λ ∈ (0, λ0).

For every λ > 0, we define the functional Eλ : W 1,2(0,∞)→ R by

Eλ(u) =
1
2
‖u‖2 −

λ

q

∫
∞

0
a(x)|u|qdx− F (u),

where

F (u) =
∫
∞

0
b(x)F(u(x))dx.

Due to the continuous embeddingW 1,2(0,∞) ↪→ L∞(0,∞), and a, b ∈ L1(0,∞), the functional Eλ is well defined and of
class C1 onW 1,2(0,∞).
We define the indicator function of the set K , i.e.

ψK (u) =
{
0, if u ∈ K ,
+∞, if u 6∈ K .

The function ψK is convex, proper, and lower semicontinuous. In conclusion, Iλ = Eλ + ψK is a Szulkin-type functional.
Moreover, one easily obtains the following

Proposition 4.1. Fix λ > 0 arbitrarily. Every critical point u ∈ W 1,2(0,∞) of Iλ = Eλ + ψK is a solution of (Pλ).
Proof. Since u ∈ W 1,2(0,∞) is a critical point of Iλ = Eλ + ψK , one has

E ′λ(u)(v − u)+ ψK (v)− ψK (u) ≥ 0, ∀v ∈ W
1,2(0,∞).

In particular, u necessarily belongs to K . In case u does not belong to K we get ψK (u) = +∞. Taking then, for instance
v = 0 ∈ K in the above inequality, we reach a contradiction. Now, we fix v ∈ K arbitrarily. Since

E ′λ(u)(v − u) = Au(v − u)− λ
∫
∞

0
a(x)|u(x)|q−2u(x)(v(x)− u(x))dx−

∫
∞

0
b(x)f (u(x))(v(x)− u(x))dx,

the desired inequality follows. �

We shall show next that Iλ = Eλ + ψK fulfills the (PSZ)c-condition for every c ∈ R.

Proposition 4.2. If the continuous function f : R → R verifies (f2) then Iλ = Eλ + ψK satisfies (PSZ)c for every λ > 0 and
c ∈ R.
Proof. Let λ > 0 and c ∈ R be some fixed numbers. Let {un} be a sequence inW 1,2(0,∞) such that

Iλ(un) = Eλ(un)+ ψK (un)→ c; (4.1)

E ′λ(un)(v − un)+ ψK (v)− ψK (un) ≥ −εn‖v − un‖, ∀v ∈ W
1,2(0,∞), (4.2)
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{εn} being a sequence in [0,∞) with εn → 0. By (4.1) one concludes that the sequence {un} belongs entirely to K . Setting
v = 2un in (4.2), we obtain

E ′λ(un)(un) ≥ −εn‖un‖.

Therefore, we derive

‖un‖2 − λ
∫
∞

0
a(x)|un|qdx−

∫
∞

0
b(x)f (un(x))un(x)dx ≥ −εn‖un‖. (4.3)

By (4.1) for large n ∈ Nwe get

c + 1 ≥
1
2
‖un‖2 −

λ

q

∫
∞

0
a(x)|un|qdx−

∫
∞

0
b(x)F(un(x))dx. (4.4)

Multiplying (4.3) by ν−1, adding this one to (4.4) and applying the Hölder inequality, for large n ∈ Nwe obtain

c + 1+
1
ν
‖un‖ ≥

(
1
2
−
1
ν

)
‖un‖2 − λ

(
1
q
−
1
ν

)∫
∞

0
a(x)|un|qdx

−
1
ν

∫
∞

0
b(x)[−f (un(x))un(x)+ νF(un(x))]dx

(f2)
≥

(
1
2
−
1
ν

)
‖un‖2 − λ

(
1
q
−
1
ν

)
‖a‖L1‖un‖

q
L∞

≥

(
1
2
−
1
ν

)
‖un‖2 − λ

(
1
q
−
1
ν

)
‖a‖L1k

q
∞
‖un‖q,

where k∞ > 0 is the best Sobolev constant of the embeddingW 1,2(0,∞) ↪→ L∞(0,∞). Since q < 2 < ν, from the above
estimation we derive that the sequence {un} is bounded in K . Therefore, due to Proposition 2.1, up to a subsequence, we can
suppose that

un → u weakly inW 1,2(0,∞); (4.5)

un → u strongly in L∞(0,∞). (4.6)

As K is (weakly) closed, u ∈ K . Setting v = u in (4.2), we obtain

Aun(u− un)+
∫
∞

0
b(x)f (un(x))(un(x)− u(x))dx− λ

∫
∞

0
a(x)|un|q−2un(u− un)dx ≥ −εn‖u− un‖.

Therefore, for large n ∈ N, we have

‖u− un‖2 ≤ Au(u− un)+
∫
∞

0
b(x)f (un(x))(un(x)− u(x))dx− λ

∫
∞

0
a(x)|un|q−2un(u− un)dx+ εn‖u− un‖

≤ Au(u− un)+ ‖b‖L1 max
s∈[−M,M]

|f (s)| · ‖u− un‖L∞ + λ‖a‖L1M
q−1
‖u− un‖L∞ + εn‖u− un‖,

whereM = ‖u‖L∞ + 1. Due to (4.5), we have

lim
n
Au(u− un) = 0.

Taking into account (4.6), the second and the third term in the last expression also tend to 0. Finally, since εn → 0+, {un}
converges strongly to u inW 1,2(0,∞). This completes the proof. �

5. Proof of Theorem 4.1

We assume throughout this section that all the hypotheses of Theorem 4.1 are fulfilled. The present section is divided
into two parts; in the first subsection we guarantee the existence of a solution for problem (Pλ) by using the Mountain
Pass theorem (see Theorem 3.1); the second subsection proves the existence of a second solution for the problem (Pλ) by
applying a local minimization argument based on the Ekeland variational principle.

5.1. MP geometry of Iλ = Eλ + ψK ; the first solution of (Pλ)

Lemma 5.1. There exist c1, c2 > 0 such that

F(s) ≥ c1sν − c2sp, ∀s ≥ 0.
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Proof. Due to (f3), there exists ρ0 ∈ [0, R] such that F(ρ0) > 0. Clearly, ρ0 6= 0, since F(0) = 0.We consider the function
g : (0,∞)→ R defined by g(t) = t−νF(tρ0). Let t > 1. By using a mean value theorem, there exists τ ∈ (1, t) such that
g(t)− g(1) = [−ντ−ν−1F(τρ0)+ τ−νρ0f (τρ0)](t − 1). By (f2), one has g(t) ≥ g(1), i.e., F(tρ0) ≥ tνF(ρ0) for every t ≥ 1.
Therefore, we have

F(s) ≥
F(ρ0)
ρν0

sν, ∀s ≥ ρ0.

On the other hand, by (f1), there exist δ, L > 0 such that |F(s)| ≤ L|s|p for |s| ≤ δ. In particular, we have that

F(s) ≥ −Lsp, ∀s ∈ [0, δ].

It remains to combine these two relations in order to obtain our claim. �

Proposition 5.1. There exists λ0 > 0 such that for every λ ∈ (0, λ0) the following assertions are true:
(i) there exist constants αλ > 0 and ρλ > 0 such that Iλ(u) ≥ αλ for all ‖u‖ = ρλ;
(ii) there exists eλ ∈ W 1,2(0,∞) with ‖eλ‖ > ρλ and Iλ(eλ) ≤ 0.

Proof. (i) Let δ, L > 0 from the proof of the previous lemma. For u ∈ W 1,2(0,∞) complying with ‖u‖L∞ ≤ δ, we have

F (u) ≤ L‖b‖L1‖u‖
p
L∞ ≤ L‖b‖L1k

p
∞
‖u‖p.

It suffices to restrict our attention to elements u which belong to K ; otherwise Iλ(u) would be +∞, i.e. (i) holds trivially.
Due to the above inequality, for every λ > 0 and u ∈ K with ‖u‖L∞ ≤ δ, we have

Iλ(u) ≥
1
2
‖u‖2 − λ‖a‖L1k

q
∞
‖u‖q − L‖b‖L1k

p
∞
‖u‖p

=

(
1
2
− λA‖u‖q−2 − B‖u‖p−2

)
‖u‖2,

where A = ‖a‖L1k
q
∞ > 0, and B = L‖b‖L1k

p
∞ > 0.

For every 0 < λ <
δp−qB(p−2)
A(2−q) , we define the function gλ : (0, δ)→ R by

gλ(t) =
1
2
− λAtq−2 − Btp−2.

Clearly, g ′λ(tλ) = 0 if and only if tλ = (λ
2−q
p−2

A
B )

1
p−q .Moreover, gλ(tλ) = 1

2 − Dλ
p−2
p−q , where D = D(p, q, A, B) > 0. Choosing

0 < λ0 <
δp−qB(p−2)
A(2−q) so small that gλ0(tλ0) > 0, one clearly has for every λ ∈ (0, λ0) that gλ(tλ) > 0. Therefore, for every

λ ∈ (0, λ0), setting ρλ = tλ/k∞ and αλ = gλ(tλ)t2λ/k
2
∞
, the assertion from (i) holds true.

(ii) By Lemma 5.1 we have F (u) ≥
∫
∞

0 b(x)[c1u
ν
− c2up]dx for every u ∈ K . Then, for every u ∈ K we have

Iλ(u) ≤
1
2
‖u‖2 −

λ

q

∫
∞

0
a(x)uqdx−

∫
∞

0
b(x)[c1uν − c2up]dx. (5.1)

Fix u0(x) = max(1 − x, 0), x > 0; it is clear that u0 ∈ K . Letting u = su0(s > 0) in (5.1), we have that Iλ(su0) → −∞ as
s→+∞, since ν > p > 2 > q and b > 0. Thus, for every λ ∈ (0, λ0), it is possible to set s = sλ so large that for eλ = sλu0,
we have ‖eλ‖ > ρλ and Iλ(eλ) ≤ 0. This concludes the proof of the proposition. �

By Proposition 4.2, the functional Iλ satisfies the (PSZ)c-condition (c ∈ R), and Iλ(0) = 0 for every λ > 0. Let us fix
λ ∈ (0, λ0). By Proposition 5.1 it follows that there exist constants αλ, ρλ > 0 and eλ ∈ W 1,2(0,∞) such that Iλ fulfills the
properties (i) and (ii) from Theorem 3.1. Therefore, the number

c1λ = inf
γ∈Γ

sup
t∈[0,1]

Iλ(γ (t))

is a critical value of Iλ with c1λ ≥ αλ > 0, where

Γ = {γ ∈ C([0, 1],W 1,2(0,∞)) : γ (0) = 0, γ (1) = eλ}.
It is clear that the critical point u1λ ∈ W

1,2(0,∞) which corresponds to c1λ cannot be trivial since Iλ(u
1
λ) = c

1
λ > 0 = Iλ(0).

It remains to apply Proposition 4.1 which concludes that u1λ is actually an element of K and a solution of (Pλ).

5.2. Local minimization; the second solution of (Pλ)

Let us fix λ ∈ (0, λ0) arbitrarily; λ0 was defined in the previous subsection. By Proposition 5.1, there exists ρλ > 0 such
that

inf
‖u‖=ρλ

Iλ(u) > 0. (5.2)
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Since a > 0, for u0(x) = max(1 − x, 0), x > 0, we have
∫
∞

0 a(x)u
q
0dx > 0. Taking into account that ν > p > 2 > q, for

t > 0 small enough one has

Iλ(tu0) ≤
t2

2
‖u0‖2 −

λtq

q

∫
∞

0
a(x)uq0dx−

∫
∞

0
b(x)[c1tνuν0 − c2t

pup0]dx < 0.

For r > 0, we denote by Br = {u ∈ W 1,2(0,∞) : ‖u‖ ≤ r} and by Sr = {u ∈ W 1,2(0,∞) : ‖u‖ = r}. Using these notations,
relation (5.2) and the above inequality can be summarized as

c2λ = inf
u∈Bρλ

Iλ(u) < 0 < inf
u∈Sρλ

Iλ(u). (5.3)

A simple argument shows that c2λ is finite. Moreover, we will show that c
2
λ is another critical value of Iλ. To this end, let

n ∈ N \ {0} such that

1
n
< inf
u∈Sρλ

Iλ(u)− inf
u∈Bρλ

Iλ(u). (5.4)

By the Ekeland variational principle, applied to the lower semicontinuous functional Iλ|Bρλ , which is bounded below (see
(5.3)), there exists uλ,n ∈ Bρλ such that

Iλ(uλ,n) ≤ inf
u∈Bρλ

Iλ(u)+
1
n
; (5.5)

Iλ(w) ≥ Iλ(uλ,n)−
1
n
‖w − uλ,n‖, ∀w ∈ Bρλ . (5.6)

By (5.4) and (5.5) we have that Iλ(uλ,n) < infu∈Sρλ Iλ(u); therefore ‖uλ,n‖ < ρλ.

Fix an element v ∈ W 1,2(0,∞). It is possible to choose t > 0 small enough such that w = uλ,n + t(v − uλ,n) ∈ Bρλ .
Applying (5.6) to this element, using the convexity of ψK and dividing by t > 0, one concludes

Eλ(uλ,n + t(v − uλ,n))− Eλ(uλ,n)
t

+ ψK (v)− ψK (uλ,n) ≥ −
1
n
‖v − uλ,n‖.

Letting t → 0+, we obtain

E ′λ(uλ,n)(v − uλ,n)+ ψK (v)− ψK (uλ,n) ≥ −
1
n
‖v − uλ,n‖. (5.7)

On the other hand, by (5.3) and (5.5) it follows

Iλ(uλ,n) = Eλ(uλ,n)+ ψK (uλ,n)→ c2λ (5.8)

as n→∞. Since v is arbitrarily fixed in (5.7), the sequence {uλ,n} fulfills (4.1) and (4.2), respectively. Therefore, in a similar
manner as in Proposition 4.2, we may prove that {uλ,n} contains a convergent subsequence; we denote it again by {uλ,n}, its
limit point being u2λ. It is clear that u

2
λ belongs to Bρλ . By the lower semicontinuity of ψK we have

ψK (u2λ) ≤ lim infn
ψK (uλ,n),

and due to the fact that Eλ is of class C1 onW 1,2(0,∞), we have

lim
n
E ′λ(uλ,n)(v − uλ,n) = E

′

λ(u
2
λ)(v − u

2
λ).

Combining these relations with (5.7) we obtain

E ′λ(u
2
λ)(v − u

2
λ)+ ψK(v)− ψK (u2λ) ≥ 0, ∀v ∈ W

1,2(0,∞),

i.e. u2λ is a critical point of Iλ. Moreover,

c2λ
(5.3)
= inf

u∈Bρλ
Iλ(u) ≤ Iλ(u2λ) ≤ lim infn

Iλ(uλ,n)
(5.8)
= c2λ,

i.e. Iλ(u2λ) = c
2
λ . Since c

2
λ < 0 (see (5.3)), it follows that u

2
λ is not trivial. We apply again Proposition 4.1, concluding that u

2
λ

is another solution of (Pλ) different from u1λ. This concludes the proof of Theorem 4.1. �
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