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1. Introduction

Variational inequalities either on bounded or unbounded domains describe real life phenomena from Mechanics and
Mathematical Physics. A comprehensive monograph dealing with various forms of variational inequalities is due to
Duvaut-Lions [1]. Motivated also by some mechanical problems where certain non-differentiable term perturbs the classical
function, Panagiotopoulos [2] developed the so-called theory of hemivariational inequalities; see also Motreanu-Radulescu
[3].

The aim of the present paper is to study a variational inequality which is defined on the half line (0, c0) by exploiting
variational arguments described below. The natural functional space we are dealing with is the well-known Sobolev space
W'P(0, 00), p > 1. Since the domain is not bounded, the continuous embedding W?(0, co) < L*°(0, co) is not compact.
Moreover, since the domain is one-dimensional, the compactness cannot be regained from a symmetrization argument as in
Esteban [4], Esteban-Lions [5], Kobayashi-Otani [6], Kristaly [7]. However, bearing in mind a specific construction from [5],
it is convenient to introduce the closed, convex cone

K={ue W0, 00) : u>0,u is nonincreasing on (0, 00)}.
The main result of Section 2 is to prove that the embedding W'?(0, co) < L*(0, co) transforms the closed bounded sets
from K into compact sets, p € (1, o). This fact will be exploited (particularly, for p = 2) to obtain nontrivial solutions for

a variational inequality defined on (0, co), involving concave-convex nonlinearities. To be more precise, we consider the
problem, denoted by (P,): Find (u, A) € K x (0, co) such that

Au(v—u) — A /OO a(x)|ux)|"2ux) (v(x) — u(x))dx — /OO b(x)f (u(x))(v(x) —u(x))dx >0, VvekKk,
0

0
where

Au(v —u) = /oo U x) (V' (x) —u'(x)dx + /OO u(x)(v(x) — u(x))dx,
0 0

andq € (1,2),a,b € L'(0, c0) and f : R — R has a suitable growth.
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By using the Ekeland variational principle and a non-smooth version of the Mountain Pass theorem for Szulkin-type
functionals, we are able to guarantee the existence of Ao > 0 such that (P,) has two nontrivial solutions whenever
X € (0, Ag).

The structure of the paper is as follows. In the next section we prove a compactness result; in Section 3 we recall some
elements from the non-smooth critical point theory for Szulkin-type functionals; in Section 4 we state our main theorem
and we prove some auxiliary results; and, in Section 5 we prove our main theorem.

2. A compactness result on (0, 00)

We endow the space W1 (0, co) by its natural norm

00 o0 1/p
||u||=[/ |u|P+/ |u’|ﬂ} ,
0 0

and the space L*°(0, co) by the standard sup-norm. The main result of this section is as follows.

Proposition 2.1. Let p € (1, 0o). The embedding WP (0, co) < L*®(0, co) transforms the closed bounded sets from K into
compact sets.

Proof. We notice that every function u € W'?(0, co) (p > 1) admits a continuous representation, see Brézis [8]; in what
follows, we will replace u by this element. It is enough to consider a bounded sequence {u,} in K and prove that there is a
subsequence of it which converges strongly in L*° (0, co). Taking a subsequence if necessary we may assume that u, — u
weakly in W'P(0, oo) for some u € W'P(0, oo). Moreover, since K is strongly closed and convex, then it is weakly closed;
in particular u € K.

Let us fixy > 0. Then

[un¥) —uPy < 2°[uh () + P (y)ly
2F fy[uﬁ(x) + uP (x)]dx
0

p p
2[Nunlly1p + lullyq,]-

IA

A

Since {u,} is bounded in W1 (0, 00), dividing by y > 0 the above inequality, then forevery & > 0there exitsR, > 0such that
un @) —u@)| < 2lunly, + lullh, 1Py~ < &/2

for every y > R, and for every n € N. Thus
||un — u”LOO(Rg.OO) <é, Vn € N. (21)

On the other hand, by Rellich theorem, WP(0,R,) — C°[0,R.](p > 1) is compact. Since u, — u in WP(0, 00), in
particular, u, — u (strongly) in C°[0, R, ], up to a subsequence, i.e., there exists n, € N such that

lun — ullcopop,y <& VN > ne.
Combining this fact with (2.1), we obtain
llug — ullio@,00) < & VN = ng,

and thus the claim is proven. 0O
3. Szulkin-type functionals

Let X be a real Banach space and X* its dual. Let E : X — R be a functional of class C! and let ¥ : X — R U {400}
be a proper (i.e. # +00), convex, lower semicontinuous function. Then, I = E +  is a Szulkin-type functional, see [9]. An
element u € X is called a critical point of I = E +  if

E@—u)+v¥@) —y@ >0 forallv eX, (3.1)
or equivalently,

0€E'(u)+ oy in X*,
where 0 (u) stands for the subdifferential of the convex functional i at u € X.

Proposition 3.1 ([9, p. 80]). Every local minimum point of I = E + v is a critical point of I in the sense of (3.1).

Definition 3.1. The functional I = E + v satisfies the Palais-Smale condition at level ¢ € R, (shortly, (PSZ).-condition) if
every sequence {u,} C X such that lim, I(u,) = c and

(E'(up), v — un)x + ¥ (v) — Y (Up) = —enllv —uy| forallv e X,

where ¢, — 0, possesses a convergent subsequence.
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The following version of the Mountain Pass theorem will be used in Section 5.1.

Theorem 3.1. Let X be a Banach space, | = E + i : X — R U {400} a Szulkin-type functional and we assume that
(i) I(x) > o forall ||x|| = p witha, p > 0, and I(0) = 0;
(ii) thereise € X with |le|]| > pandI(e) < 0.

If I satisfies the (PSZ).-condition for
= inf I(y (1)),
¢ = Inf max (y ()
I ={y e C([0,1,X) : y(0) =0,y(1) =e},
then c is a critical value of I and ¢ > «.

4. Main theorem and related results

Letf : R — R be a continuous function. We denote by F(s) = fosf(t)dt. We assume that
(f1): There exists p > 2 such that f(s) = O(|s|P"') ass — 0.
(£2): There exists v > p such that

VF(s) — f(s)s <0, VseR.
(£3): There exists R > 0 such that

max F(s) > 0.
s€[0,R]

We shall prove the following theorem which represents the main result of this paper.

Theorem 4.1. Let f : R — R be a continuous function which satisfies (F1)- (£3), q € (1, 2),and a, b € L' (0, oo) witha, b > 0.
Then there exists Lo > O such that (P,) has at least two nontrivial, distinct solutions ui, ui € K whenever A € (0, Xp).

For every A > 0, we define the functional E, : W'2(0, co) — R by

1 A [

Ex(w) = —|lull* — */ a@)|ulidx — F (u),
2 aJo

where
o0

Fu) = / b(x)F (u(x))dx.

0

Due to the continuous embedding W12(0, co) < L*(0, c0), and a, b € L'(0, 0o), the functional E, is well defined and of
class C' on W'2(0, 00).
We define the indicator function of the set K, i.e.

0, ifu ek,
VW) = {+oo, ifugkK.

The function vy is convex, proper, and lower semicontinuous. In conclusion, I, = E; + ¥ is a Szulkin-type functional.
Moreover, one easily obtains the following
Proposition 4.1. Fix .. > 0 arbitrarily. Every critical point u € W1-2(0, 0o) of I,, = E; + Y is a solution of (P).
Proof. Since u € W'2(0, oo) is a critical point of I, = E; + 1, one has
Ej (u)(v —u) + ¥ (v) — Yk () =0, Vv e W"(0, 00).

In particular, u necessarily belongs to K. In case u does not belong to K we get y,(u) = +o0. Taking then, for instance
v = 0 € K in the above inequality, we reach a contradiction. Now, we fix v € K arbitrarily. Since

E W@ —w =Au(v —u) — A/ a@)[u@)"*u() () — u(x))dx — / b@)f (ux)) (v(x) — ux))dx,
0

0
the desired inequality follows. O

We shall show next that I, = E; + v fulfills the (PSZ).-condition for every c € R.

Proposition 4.2. If the continuous function f : R — R verifies (f2) then I,, = E, + v satisfies (PSZ). for every A > 0 and
ceRr

Proof. Let A > 0and c € R be some fixed numbers. Let {u,} be a sequence in W12(0, oo) such that
L (un) = Ex(un) + Y (un) — ¢ (4.1)
E} (un) (v — un) 4+ Y (v) — Y (Un) = —&nllv — upll, Vv € W"*(0, 00), (4.2)
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{en} being a sequence in [0, co0) with &, — 0. By (4.1) one concludes that the sequence {u,} belongs entirely to K. Setting
v = 2u, in (4.2), we obtain

E;‘(un)(un) > —é&pllunll.

Therefore, we derive

lunll? = & / 000 *clx — / BOOS (un () tn (X = ] (4.3)
0

0
By (4.1) for large n € N we get

1 5 )\. o0 o0
cH1= Su? =2 / a(0) unl*x — / b(X)F (un(x))dx. (4.4)
2 qJo 0

Multiplying (4.3) by v=1, adding this one to (4.4) and applying the Holder inequality, for large n € N we obtain

1 1 1 5 1 1 © ]
cH1+—lull = (===l =2 - -~ a(x)|uy|?dx
v 2 v qg v/)Jo

-1 o0
. f b)[—f (un (%)) un (%) + VF (uy(x))]dx
0

@ (1 1 5 11 ]

= 375 ) Iwl” =2 PR llallz llunll oo
11 : 11

> (5 - ;) llunll™ — 2 (a - ;) llallkdllunll?,

where k., > 0 is the best Sobolev constant of the embedding W'2(0, co) < L*(0, 00). Since ¢ < 2 < v, from the above
estimation we derive that the sequence {u,} is bounded in K. Therefore, due to Proposition 2.1, up to a subsequence, we can
suppose that

u, — u weakly in W2(0, c0); (4.5)
u, — u strongly in L°(0, 00). (4.6)

As K is (weakly) closed, u € K. Setting v = u in (4.2), we obtain

At — ) + / T O (n(0) U () — U)X — & / ™ 400 a2t — un)lx = —enlu — ]l
0 0

Therefore, for large n € N, we have

lu—upll® < Au(u—uy) + /oo bCOf (ua (%)) (U (%) — u(x))dx — A foo a(X) |un| 92 un (U — up)dx + &pllu — up|l
0 0

< Au(u—up) + [[bllp max |f(s)] - lu— upllze + Alall M9 |u — uplle + enllu — upll,
se[—M,M]
where M = ||ul|;~ + 1. Due to (4.5), we have

limAu(u — u,) = 0.
n

Taking into account (4.6), the second and the third term in the last expression also tend to 0. Finally, since &, — 07, {u,}
converges strongly to u in W12(0, o). This completes the proof. O

5. Proof of Theorem 4.1

We assume throughout this section that all the hypotheses of Theorem 4.1 are fulfilled. The present section is divided
into two parts; in the first subsection we guarantee the existence of a solution for problem (P,) by using the Mountain
Pass theorem (see Theorem 3.1); the second subsection proves the existence of a second solution for the problem (P;) by
applying a local minimization argument based on the Ekeland variational principle.

5.1. MP geometry of I, = E; + v; the first solution of (P,)

Lemma 5.1. There exist ¢y, c; > 0 such that

F(s) > 18" — 38, Vs> 0.
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Proof. Due to (f3), there exists pg € [0, R] such that F(pg) > 0. Clearly, pg # 0, since F(0) = 0. We consider the function
g :(0,00) — Rdefined by g(t) = t "F(tpg). Let t > 1. By using a mean value theorem, there exists T € (1, t) such that
g(t) —g(1) = [—vT ™" 'F(tpo) + 77" pof (T po)1(t — 1). By (£2), one has g(t) > g(1),i.e, F(tpo) > t"F(po) forevery t > 1.
Therefore, we have

F(p0)

v

Lo
On the other hand, by (f1), there exist §, L > 0 such that |[F(s)| < L|s|? for |s| < §. In particular, we have that

F(s) > —Ls?, Vs e [0,4].

It remains to combine these two relations in order to obtain our claim. O

F(s) =

s”, Vs> po.

Proposition 5.1. There exists Ag > 0 such that for every A € (0, Ag) the following assertions are true:

(i) there exist constants «;, > 0 and p; > 0 such that I, (u) > «; forall ||u]| = p;;
(i) there exists e, € W12(0, co) with |le,|| > p; and I, (e,) < O.

Proof. (i) Let §, L > 0 from the proof of the previous lemma. For u € W'2(0, co) complying with ||u||;~ < &, we have
F(u) < LlIbllllullfs < LD kB [lullP.

It suffices to restrict our attention to elements u which belong to K; otherwise I, (u) would be 400, i.e. (i) holds trivially.
Due to the above inequality, for every A > 0 and u € K with ||u]|;~ < §, we have

1
L(u) = EIIUII2 — Mallp kS lull® = Libll 2 kB lull”

1 _ _
(5 — AA[ul|"7% — Bllu|]? 2) flull?,

where A = ||a||;1kd > 0,and B = L||b||;1k5, > 0.

Forevery0 < A < %, we define the function g, : (0, §) — R by

1
&) = 3 AMALT2 — BtP2,

1 —2
Clearly, g (t,) = Oifand only if t;, = (kg%)ﬁ. Moreover, g, (t,) = % - D)J;Tq, where D = D(p, q, A, B) > 0. Choosing
0 <Xy < % so small that g; ,(t,,) > 0, one clearly has for every A € (0, A¢) that g, (t;) > 0. Therefore, for every

X € (0, Ag), setting ps = t; /koo and o = g, (t5)t7 /K%, the assertion from (i) holds true.
(ii) By Lemma 5.1 we have # (u) > fooo b(x)[ciu” — cuP]dx for every u € K. Then, for every u € K we have

‘1 5 )\' o0 o0 ;
L) < =|ul|* — f/ a(x)uldx —/ b(X)[ciu’ — cuP]dx. (5.1)
2 q Jo 0

Fix ug(x) = max(1 — x, 0), x > 0; itis clear that uy € K. Letting u = sup(s > 0) in (5.1), we have that [, (sug) — —o0 as
s — 4o00,sincev > p > 2 > qand b > 0. Thus, for every A € (0, Ag), itis possible to sets = s; so large that for e, = s, ug,
we have |e, || > p, and I, (e;) < 0. This concludes the proof of the proposition. O

By Proposition 4.2, the functional I, satisfies the (PSZ).-condition (c € R), and I, (0) = O for every A > 0. Let us fix
A € (0, Ag). By Proposition 5.1 it follows that there exist constants «;, p, > 0and e, € W'2(0, co) such that I, fulfills the
properties (i) and (ii) from Theorem 3.1. Therefore, the number

¢, = inf sup I (y(t))
Y€l tefo,1]

is a critical value of I, with c; > w; > 0, where
I ={y e (0,1, W"*(0,00)) : ¥(0) =0, ¥(1) = ;.

It is clear that the critical point u} € W'2(0, co) which corresponds to ¢, cannot be trivial since I, (u}) = ¢} > 0 = ,(0).
It remains to apply Proposition 4.1 which concludes that ] is actually an element of K and a solution of (P;).

5.2. Local minimization; the second solution of (P)

Let us fix & € (0, Ag) arbitrarily; Ag was defined in the previous subsection. By Proposition 5.1, there exists p; > 0 such
that

inf I, (u) > 0. (5.2)
lull=p;.
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Since a > 0, for ug(x) = max(1 — x, 0), x > 0, we have fooo a(x)ugdx > 0. Taking into account that v > p > 2 > q, for
t > 0 small enough one has

tZ Al 00 [ee)
I (tug) < 5||u0||2 - —/ a(x)ugdx —/ b(x)[cit"uy — cptPubldx < 0.
a Jo 0

Forr > 0, we denote by B, = {u € W2(0, 00) : ||u|| < r}andbyS, = {u € W"2(0, 00) : ||u|| = r}. Using these notations,
relation (5.2) and the above inequality can be summarized as

¢ = inf LLi(w) <0 < inf I, (u). (5.3)

ueBp, UESp,

A simple argument shows that ¢ is finite. Moreover, we will show that ¢? is another critical value of I;. To this end, let
n € N\ {0} such that

1
— < inf L (u) — inf L (u). (5.4)
n ueSp;L ueB,,)L

By the Ekeland variational principle, applied to the lower semicontinuous functional Iklsm , which is bounded below (see
(5.3)), there exists u, , € B,, such that

1
Li(uyy) < inf Li(u) + = (5.5)
ueBp, n

1
L(w) > L(uy) — E”w —Uall, Yw €B,,. (5.6)

By (5.4) and (5.5) we have that I, (u; ) < infuesm I, (u); therefore |luy n|| < py.

Fix an element v € W'2(0, co). It is possible to choose t > 0 small enough such that w = u, , + t(v — Uy n) € Bp,.
Applying (5.6) to this element, using the convexity of ¥/, and dividing by t > 0, one concludes

E,(upn +t(v —uy ) — E.(unn)
t
Letting t — 0%, we obtain

1
+ Y (v) — Y (Upn) = _H”U — Ul

1
E, (W.n) (v — W n) + Y (v) — Y (W) > —HIIU — U nll (5.7)
On the other hand, by (5.3) and (5.5) it follows

L (Upn) = Es (Wn) + YW ) — ¢} (5.8)

asn — oo. Since v is arbitrarily fixed in (5.7), the sequence {u, ,} fulfills (4.1) and (4.2), respectively. Therefore, in a similar
manner as in Proposition 4.2, we may prove that {u, ,} contains a convergent subsequence; we denote it again by {u;_}, its
limit point being u?. It is clear that u? belongs to B,, . By the lower semicontinuity of ¥ we have

'/’K(Ui) =< limninflﬁ,( (),
and due to the fact that E; is of class C! on W2(0, 0o0), we have
lim E} (t,n) (v — ) = E} (1) (v — 15).
Combining these relations with (5.7) we obtain
E, () (v — 1) + Yy (v) — Y (1) = 0, Vv € WH2(0, 00),
ie. uf\ is a critical point of I, . Moreover,

53) . o 58
c? = ugf I (u) < L(u?) < liminfl; (u;_,) =) cz,
ue 05, n

ie. L (u?) = c2. Since ¢Z < 0 (see (5.3)), it follows that u? is not trivial. We apply again Proposition 4.1, concluding that u?
is another solution of (P;) different from ui. This concludes the proof of Theorem 4.1. O
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