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Abstract

Biological neurons are good examples of a threshold device – this is why neural systems are in the focus when looking
Ž . Ž .for realization of Stochastic Resonance SR and spatio-temporal stochastic resonance STSR phenomena. In this Letter a

simple integrate-and fire model is used to demonstrate the possibility of STSR in a chain of neurons. The theoretical and
computational models so far suggest that SR and STSR could occur in neural systems. However, how significant is the role
played by these phenomena and what implications might they have on neurobiology is still a question. Because the direct
biological proof of SR and STSR seems to be a tough issue one might look at indirect ways to decide whether the internal

Žnoise plays any constructive role in the nervous system. A loop of neurons is shown to have interesting features frequency
.selection which might supply a clue for answering the previous question. q 2000 Published by Elsevier Science B.V. All

rights reserved.

1. Introduction

Many scientists have been concerned lately with
Ž .stochastic resonance SR , a paradoxal phenomenon

in which an optimal noise intensity maximizes the
winformation transfer through a nonlinear device 1–

x21 . One of the simplest devices showing this phe-
Ž .nomenon is the level-crossing detector LCD which

‘fires’ a pulse at its output whenever the signal at its
w xinput crosses a threshold 14–16 . Such a device is

also an acceptable model for a biological neuron
since they both have a threshold, a crucial feature in
signal detection.

) Corresponding author Tel.: q1-314-516-5015; fax: q1-314-
516-6152; e-mail: balazsi@neurodyn.umsl.edu

1 Until 1999: L.B. Kiss.

A generalization of the notion of SR has been
w xintroduced recently in 17 , called spatio-temporal

Ž .stochastic resonance STSR in which perturbation
propagation in a subexcitable medium is optimized

w xby noise 17,22–25 .
It has been shown by computer simulation that

STSR is a basic feature of both neural and glial
systems. These systems have been investigated by
two different ways of modelling, both leading to the
same conclusion: that there is an optimal amount of
noise which optimizes the perturbation propagation.
The reason for this phenomenon lies in the common
feature of the two models, that is, they both represent
a network of interconnected threshold elements
w x14,17,26 .

The big question is whether this is valid in reality,
Ž .or does Nature take advantage of STSR or SR ? Is it
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possible that organisms are using STSR and SR,
Žhaving tuned their noise and all of their other

.parameters through adaptation andror millions of
years of evolution to the optimal value? It has been
shown experimentally that animals like the crayfish
can take advantage of the external noise present in

w xthe environment when detecting weak signals 11 .
SR effects due to internal noise, however, are very

w xdifficult to observe in neural cells 27 because by
trying to tune the internal noise one changes the cell
parameters drastically. It has been speculated that

w xanimals benefit from their internal noise also 12 .
Quite recent experiments demonstrated the be-
havioural significance of external noise, which can

w xhelp the paddlefish in capturing its prey 28 .
Nevertheless, there seems to be no direct way of

Ž .proving the existence of STSR or SR in natural
tissues by using internal noise. It is disputable
whether or not internal noise can play any construc-

w xtive role in biology in addition to external noise 18 .
In order to answer this question it is needed to turn
to indirect ways of investigation. Hence the next
question could be: even if it is not possible to
‘reproduce’ SR in biological systems by tuning their
internal noise, can we simulate well-known biologi-

Ž .cal or medical phenomena by using noisy subex-
citable systems?

Since the end of the last century it has been
known that periodically fluctuating potentials can be
measured outside the skull of an animal, by a method

Ž .called lectroencephalography EEG . The frequency
and amplitude of these fluctuations vary with the
alertness of the subject, giving rise to beta, alpha,
theta and delta waves. The deeper the sleep, the
higher the amplitude and slower the frequency. There
have been many attempts to explain this collective
oscillation of the neurons in the brain. One of the
recent theories supposes a thalamocortical loop of
neurons. When external excitation ceases, the loop
enters a self-oscillating state, and its neurons begin
unrestrained rhythmic firing. The theory leads to

w x‘EEG waves’ similar to the measured ones 29–31 .
These models suppose that even in sleep, impulses
circulate around closed loops in the brain.

This is why it is interesting to study loops formed
Žout of a series of neurons as introduced later Section

.2.1 . Is it possible that specific eigenfrequencies are
selected by our brain structures simply because of

their topology? This is the question we are trying to
address in this Letter. First we prove that STSR
arises as a consequence of the threshold properties of
the neurons, then we go on to modelling brain
waves.

2. Results

2.1. The model

A chain of LCDs was constructed in the following
way: `™`™ . . .™`. Each element of the

Ž .chain had the following parameters: threshold V ,T
Ž .spike length T , the net capacitance of the synapticI

Ž .input area in each neuron Cs1 , recovery period
Ž . Ž .length T , Excitatory Post-Synaptic Potential qR

Ž .per unit time DT arising in the next neuron after an
action potential arrives to the synapse, and memory
Ž .or time constant, t representing the time for which
the neuron ‘remembers’ the incoming charge quanta

w xq 32 . All the elements of the chain operate in an
all-or-none fashion: their output within Dt can only
be either a constant value q, or nothing.

The most important parameter describing every
Ž .neuron’s LCD ,nG0 dynamics is its excitabilityn

Ž .e t – an integer number:n

Ø if e -yT the neuron is excitable;n R

Ø if yT -e -0 the neuron is in a recoÕeryR n

period and its output is equal to zero no matter
what is the depolarization on the input;

Ø if 0-e the neuron is excited and it is emittingn

constant amounts of charge into the synaptic gap.
Ž .The first element of the system labelled LCD0

is different from all the rest: it is a subthreshold
oscillator, meaning that it generates its own signal
even without excitation from other neurons. Constant
amounts of charge q are emitted into LCD for a1

time T DT whenever an additive Gaussian whiteI
Ž .noise j t helps a sinusoidal oscillation cross the0

threshold of LCD . For the next T units of time,0 R

LCD is uncapable to emit any charge. This LCD0

does not have memory, and the equations describing
its dynamics are:

e t se tyDT y1q T q1Ž . Ž . Ž .0 0 I

=H ye tyDT yTŽ .0 R

=H V tyDT 1Ž . Ž .0
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V t sA sin 2p ftqfŽ . Ž .0 0

qN j tyDT yV 2Ž . Ž .0 0 T

Q t sqH e t 3Ž . Ž . Ž .0 0

Ž . Ž . Ž .In Eqs. 1 – 3 the parameter V t represents the0

voltage fluctuations of the cell, A , f and f are the0

usual parameters describing a harmonic function and
Ž .Q t is the charge entering LCD . The value of f0 1

was always chosen to be much lower than any of the
Žother frequencies specific to the LCDs e.g. 1rt ,

.1rT , 1rT . The function H is the well-knownI R

Heaviside step-function:

H x s0, if xF0, and 1, if x)0 4Ž . Ž .
The existence of such subthreshold oscillators in

w xcortical areas has been proven recently 33,34 . The
Ž .noise N j t is completely independent of the noise0 0

applied on LCD ,n)0.n
ŽThe rest of the LCDs are passive they can just

.transmit a signal, not generate one , and are num-
bered LCD , LCD , LCD , . . . . During the simula-1 2 3

tion, their dynamics is described by the following
equations:

e t se tyDT y1q T q1Ž . Ž . Ž .n n I

=H ye tyDT yTŽ .n R

=H V tyDT yV 5Ž . Ž .n T

tyDT Q Q qNj QŽ . Ž .ny1 n
V t sŽ . Ýn C

QstytDT

=H ye t 6Ž . Ž .n

Q t sqH e t 7Ž . Ž . Ž .n n

Ž . Ž .The variables in Eq. 5 – 7 have the following
Ž .meaning: V t is the depolarization at the input ofn

Ž .the nth neuron at time t, Q t is the charge emittedn

by the nth neuron within the unit time DT. The
coupling between the elements of the LCD chain is
unidirectional.

Ž . Ž .In a few words, the Eqs. 5 – 7 mean the follow-
ing: during the simulation, the excitability e ,nG0n

Ž . Ž . Ž .Fig. 1. The voltage V t of LCD n)0 when the incoming current is constant. The traces that are: without noise continuous line andn n
Ž . Ž .with noise added to Q t dashed line .ny 1
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is decreased by 1 at every time step, and it is reset to
Ž .e sT whenever the neuron is excitable e -yTn I n R
Ž Ž . .and the voltage is above the threshold V t )V .n T

Ž . Ž . Ž .The voltage V t is the sum of the Q t qNj tn ny1 n

values which arrived within the previous t time
steps, and is reset to zero while LCD is excitedn
Ž .e )0 . The neuron does not emit any charge untiln

it is excited.
Ž .The Gaussian noise term Nj t added to then

input of the nth neuron at time t, has the property

² X : X
j t j t sd ty t d 8Ž . Ž . Ž . Ž .n m m n

Ž Ž ..The intensity of such type of noise i.e. Nj t isn
Ždefined by its standard deviation, equal to N jn
.itself is defined to have a standard deviation ss1 .

Ž . Ž .Eqs. 5 – 7 are similar in nature to the integrate-
w x Žand-fire model of neurobiology 35 the sum in Eq.

w6 is in fact an integration over the interval ty
x.tDt,t . This model is, however, even more simpli-
Ž .fied from a computational point of view : the usual

definition of the time constant tDtsRrC, corre-
sponding to an exponential decay of any depolariza-

tion becomes a time within which the neuron com-
Žpletely remembers and any depolarization and com-
.pletely forgets it if it arrived before tytDt . Hence

the exponential decay is replaced by a step function:

Q t sQ 0 eyt rŽtD t .
™Q tŽ . Ž . Ž .

sQ 0 H tDty t , t)0 9Ž . Ž . Ž .

A similar two-dimensional model has been used for
w xthe definition of STSR in 1995 17 . The present

model has the following new features:
Ø the spikes fired by the neurons are no longer

delta-functions. They are rather square pulses of
amplitude q and of duration T .I

Ø the neurons have a memory T Dt during whichI

all the depolarization is remembered completely.
Ž .Q tyQ is forgotten completely if Q)tDt.n

Ž . Ž . Ž .The voltage V t of LCD n)0 when Q tn n ny1

sconst. can be seen on Fig. 1. Two cases are
Ž .plotted: with no noise and with Gaussian noise j tn

Ž .added to Q t at every moment t. One can get any1

Ž .Fig. 2. The spectral density of LCD n)0 if only noise is present on the input. One can see an increase of the peak height and a shift ton

higher frequencies as the noise intensity increases.
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feeling that even if for some reason without noise
Ž .there were no chance for V t to reach the thresh-n

old, the presence of noise could facilitate threshold
crossing. The incoming charge per time step was

Ž .Q t s60 and held constant, other parametersny1

were: ts30, T s5, T s5, Dts0.25, V sI R T

1500.0. The fact that noise facilitates signal propaga-
tion is also illustrated by Fig. 2, where the incoming

Ž .current is Q t s0.ny1

If one would look at the power spectrum of
Ž . Ž Ž . .LCD n)0 with no input Q t s0 , withoutn ny1

noise there would be no output. If a Gaussian white
Ž .noise N/0 is also present, the power spectrum on

the output for sufficiently high noise intensity N
would look like in Fig. 2. The LCD’s input contains

Žin this case sequences of random walk, because of
.integration and the probability of threshold crossing

becomes nonzero.
One can notice the presence of a peak in the

spectrum without any periodic signal on the input.
The height of the peak increases with the noise
intensity N. In addition, the peak shifts to the right

as we increase the noise intensity. The shift appears
just for the lower range of noise intensities. These

Ž .features of the output of LCD n)0 can be ex-n

plained in the following way:
Ø The presence of the peak: there is an inherent

Ž .periodicity in the behaviour of LCD n)0 . Thisn

periodicity is a consequence of the fact that the
time between two consecutive spikes cannot be

Ž .lower than T qT Dt. If the location of theI R

peak is f , it means that the most frequent inter-0

spike interval is 1rf .0

Ø The increase of the peak height: for higher noise
intensity more threshold crossings happen. This

Ž .increases the output power of LCD n)0 .n

Ø The shift to the right for low noise intensities: the
most frequent interspike interval decreases as
more and more threshold crossings occur.

2.2. Spatio-temporal stochastic resonance

We set up this system in such a way that noise is
necessary for propagation at any ‘synapse’. This can

Fig. 3. The subthreshold oscillation and the EPSP’s emmited by the 3rd neuron. One can notice that the bursts of spikes are in good
synchron with the peaks of the sinus oscillation.
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be achieved by adjusting q. Above a critical Õalue
Ž .of q given by Eq. 10 , the perturbation propagates

with no loss along the chain.

V t tT
sT q T 10Ž .I R½ 5qCDt T qT T qTI R I R

� 4 w xHere x means the fractional part of x, so xsn x
� 4 � 4q x , ng . . . ,y2,y1,0,1,2, . . . . For fairly small

q, the perturbation is not propagated farther than
LCD . Close to the critical value for q, there can be1

Ža few LCDs which are ‘excited’ by LCD the0
.oscillator , depending on the value of the time con-

Ž .stant t . Therefore q describes the excitability at a
given synapse. By adding gaussian white noise
Ž Ž . .Nj t ,n)0 to each of the synapses, the effect ofn

the oscillator can be extended along the chain. This
noise can arise biologically from signals sent by
other neurons to the same synapse or from the
neuron itself. It is an internal noise in the sense that
it arises inside the organism during information pro-
cessing. The noise intensity N is different from N;0

while N is held constant, N is going to be varied.0

N is chosen such a way that the SNR of the output0
Ž .Q t is maximized. One could always replace LCD0 0

with any device emitting square pulse bursts of
constant amplitude. The reason for choosing LCD0

to be a subthreshold oscillator is entirely biological.
Is the chain of neurons capable of transmitting the

information supplied by this oscillator if q is close
to, but under the critical value? It all depends on the
parameters of the neurons. Defining the information
transmission quality as the signal-to-noise ratio at the
basic frequency of the oscillator:

S yNn n
SNR s , 11Ž .n Nn

where S and N are LCD ’s signal power and noisen n n

power at the basic frequency, respectively – one can
track down the information propagation along the
chain.

First of all, the oscillating cell is going to emit
bursts of spikes, and these bursts follow more or less
the peaks of the subthreshold sinusoidal oscillation
Ž .see Fig. 3 . The neurons farther down the chain will
also tend to fire when the previous neuron fired.
Although the noise we add to q at the synapses helps

Ž .the oscillator LCD extend its effect over to farther0

and farther LCD’s, it also makes the SNR decrease
along the chain.

Fig. 4. a. Propagation length as function of noise intensity b. SNR versus distance for three different noise intensities: dashed lines low
Žnoise; continuous linesoptimal noise; dotted lineshigh noise. The parameters used were V s1500, T s5, T s5, ts20, qs280 theT I R

.critical value is qs300 .
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The value of the SNR is represented in Fig. 4 as a
function of the distance from LCD . The same0

Ž .signal Q t was applied repeatedly at the entrance0
Ž . Ž .of LCD . Only the noise terms j t n)0 were1 n

varied. One can notice a decay along the chain, and
can define the ‘propagation length’ in the following
way: the number of the LCD where SNR becomes
less than 1.5 for the first time. This definition of the

w xpropagation length is similar to the one used in 36 .
Also on Fig. 4 can be seen the dependence of the
propagation length upon noise.

Although the SNR decays with distance along the
chain of neurons, according to Fig. 4 there is an
optimal noise intensity, for which the signal propa-
gates the farthest. Therefore in this simple model we
have STSR. The shape of the STSR curve depends
on q, that is, for higher q the peak increases in
amplitude and its location moves toward zero noise
intensity. For supercritical q, there is no peak, just a
simple decay.

One of the subtleties that must be noted is that
signal transmission strongly depends on the filling

factor of the signal at the entrance, that is at low
filling factor there is good transmission. The filling
factor can be defined as the mean duration of a burst

w xover the period of oscillation. According to 37 the
filling factor is what determines the degree to which
a stochastic resonator can improve the SNR. This
point seems to be of crucial importance here, since
as the filling factor approaches 0.5, the propagation
ceases totally. Based on the same paper, the condi-
tions for optimal wave propagation can be deter-
mined. At the entrance there must be a perfectly
periodic square impulse train with low filling factor;
the memory of the neurons has to be very small and
q close to the threshold. Indeed, in such a setup one
can obtain propagation as far as hundreds of neurons
away from the subthreshold oscillator.

Another way to improve signal propagation is by
considering a multiple chain, in which each neuron
in a given section can receive impulses from all the
neurons in the previous section. The behaviour of the
multiple chain is similar to that of the simple one
with the difference that here the neurons also do a

Fig. 5. Averaged power spectra for an LCD inside the loop. Dotted line: no loop; dashed line: loop length s 25; continuous line: loop
Ž .length s 40. Other parameters are: V s1500, T sT s20, ts2, qs1450, Ns60, f s2r T qT .T I R cutoff I R
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Žspatial summation of the incoming impulses from
.the previous chain section .

To summarize, the STSR effect appears because:
Ø By adjusting the excitability q we set up the

system such a way that it is only able to transmit
perturbation within a few elements of the chain.
This is going to be the case for low noise inten-
sity also;

Ø For high noise intensity the effect of the noise is
overwhelming compared to the effect of LCD ;0

Ø There is an optimal noise intensity for which the
effect of LCD can be extended farthest down the0

LCD chain.

2.3. The effect of a back-connection

A loop has been formed from the previous LCD
chain in the following way: the output of a specific
LCD from the array was back-connected to the input
of LCD . Therefore this LCD’s input was equal to1

the sum of the outputs of LCD and the back-con-0

necting LCD:
tytDT Q Q qNj QŽ . Ž .0 1

V t sŽ . Ý1 C
QstyDT

=H ye t Q Q qNj t 12Ž . Ž . Ž . Ž .1 L 1

Ž .After such a setup, a random Poisson- series of
spikes was fed into the loop via LCD . The probabil-0

ity that M spikes are generated by LCD within a0

time interval T is described by Poisson’s law:

MrTŽ .
yr Tp M ,t s e 13Ž . Ž .

M !

where r is the average generation rate. The propaga-
tion of the Poisson process along the chain was again
assured by adding noise to the EPSP’s at each of the
synapses. The LCD’s had high excitability, with
V s1500, qs1450,ts2. The power spectrum of aT

given LCD inside the loop was plotted after averag-
ing. The results for different lengths of the loop can

Žbe seen on Fig. 5 the loop lengths are defined as the
number of LCDs from the LCD with two inputs to

.the LCD from which the back-connection was made .
The plot just shows the region of lowest frequen-

cies of the power spectrum. The spectrum is a series
of bumps with decreasing height. Here one can only
see the first bump from the spectrum. It is obvious
that the spectrum is smooth if the chain does not
have a back-connection. Making a back-connection
creates peaks in the power spectrum. Analyzing the
position of the peaks that appear, the following is
observed:
Ø the locations of the two peaks corresponding to

the loop with length 40 are, respectively: f s5711

Fig. 6. Electronic circuit for producing frequency selection. A random series of spikes of length 1 time unit were fed into the circuit through
input 1. The two devices were uncapable of producing output for 1 time unit after each spike. The random spike series at input 1 of the ‘OR’
gate resulted from the threshold crossing of an uncorrelated gaussian process. The threshold was 1, the standard deviation of the Gaussian
process was 0.5, the probability of spike loss was 0.1, and the delay caused by the second device was a variable parameter. The spikes were
of unit amplitude. Frequencies proportional to the reciprocal of the delay were selected.
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" 3 and f s112 " 6. The ratio of these12

numbers shows that f and f , are harmonics:12 11

f 111
s0.5089f 14Ž .

f 212

Žwhere f is the fundamental frequency or first11
.harmonic , and f is the second harmonic.12

Ø the location of the first peak corresponding to the
loop with length 40 and the first peak correspond-
ing to the loop with length 25 are, respectively:
f s57 " 3 and f s91 " 3. The ratio of11 21

these numbers shows that they are frequencies
selected by the loop:

f 5711
f f0.626 15Ž .

f 9121

L 252
s f0.625 16Ž .

L 401

where L and L are the loop lengths, equal to 401 2

and 25, respectively. This situation reminds one

the fact that in a resonating cavity, the eigenwave-
lengths are proportional to the dimension of the

Žcavity e.g. the length of a tube or the perimeter
.of a Bohr orbit , or the eigenfrequencies are

proportional to the inverse of the cavity’s dimen-
sion:

Õ Õ
f s sn , ns1,2,3, . . . 17Ž .n

l 2 Ln

where f and l are the frequencies and wave-n n

lengths of the nth harmonic, respectively, Õ is the
Ž .wave velocity, and L is the dimension length of

the cavity.
The ‘selection of frequencies’ does not mean

anything analogous to standing wave formation in
classical mechanics. The eigenfrequencies, however,
are related to the length of the loop in a similar
fashion as the standing waves in classical mechanics
or electrodynamics. A more suitable analogy would
be the bloop produced with a microphone and a

Fig. 7. Power spectra for an LCD inside the loop for two different noise intensities. Dashed line: noises60; continuous line: noises200.
Other parameters were chosen as before.
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speaker by positive feedback. The effect can be
reproduced with a simple electronic circuit, where
LCD is replaced with an ‘OR’ gate, with inputs1

Žfrom LCD and LCD . The rest of the chain LCD0 L 2
.™ . . .™LCD is replaced by a device which causesL

a delay of the spike train and loss of spikes with a
Ž .given probability see Fig. 6 . It is easy to show by

computer simulation that this simple circuit selects
frequencies similarly to the simulated neuronal loop.
The role of the noise besides assuring propagation is
to decrease the number of propagating spikes along
the loop, thereby avoiding complete reverberation
Ž .and saturation of spike density .

The explanation of this phenomenon lies in Pulse
Ž .Frequency Modulation PFM , which is the basis of

w xhow the LCD transfers a low frequency signal 38 .
It is basically an additive and linear process: if
spikes originating from two or more different sources
are ‘added’ by LCD , the resulting output signal will1

contain the sum of the individual low frequency
signals. The condition for this is that the spike
overlap should be small. A random spike train ‘car-
ries’ a wide spectrum of frequencies. The two spike

Ž .trains entering the ‘OR’ gate or LCD must have a1

maximum in their cross-correlation function due to
the fact that one is simply the time-shifted noisy
copy of the other. This maximum causes the eigen-
frequency peaks to appear.

The ‘eigenfrequency peaks’ have another interest-
Žing feature which does not apply for the classical or

.quantum mechanical eigenmodes: their location is
dependent on the noise intensity present at the
synapses. This is represented in Fig. 7. The only
explanation for this fact can be that the speed of
perturbation propagation increases with noise inten-
sity. Thus the location of the peaks are shifted,
according to Eq. 18. The peak location versus noise
intensity can be seen in Fig. 8.

Ž . Ž .Fig. 8. Left: peak location versus noise intensity. The location of the first d and last o peaks are represented. Only the first peak is due
Ž .to the back connection, the last peak appears simply because of the inherent periodicity of the LCDs. Right: height of the first d and last

Ž .o peaks versus noise intensity. The parameters were ts2, T s20, T s20, qs1450.0, V s1500, N s50.I R T 0
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The frequency selection described here appears
for various parameters, requiring the following con-
ditions:

Ž .Ø a choice of parameters including noise intensity
such that the propagation length discussed in
Section 2.1. is greater than the loop length:

L )L 18Ž .prop loop

This requires low t and high q – in other words,
the ‘neurons’ in the chain must have high ex-
citability.

Ø the loop length has to be such that the arising
eigenfrequencies are smaller than half of the cut-
off frequency specific for each element of the the
LCD chain, which is equal to

2
f - f s 19Ž .1 cutoff T qTI R

The question arises, why consider noise-supported
propagation? The reason is that considering q ex-
ceeding the threshold, the back-connection causes a
build-up of the power of the propagating signal

because of the back-connection. After a few rever-
berative cycles the spike density reaches its maxi-
mum.

3. Conclusions and further questions

In conclusion, it has been shown that for highly
excitable neural pathways show the following fea-
tures based on a simple integrate-and-fire LCD
model:
Ø STSR is possible in such systems, meaning that

there is a specific internal noise intensity for
which a periodic perturbation applied at the en-
trance is detectable farthest down the chain;

Ø if a loop is formed out of linearly connected
Ž .LCDs, and fed with a random Poisson- process,

specific frequencies are selected by the loop if the
parameters are such that the propagation length is
greater than the length of the loop.
If highly excitable neural pathways exist in the

brain, which make at least a back-connection, one

Fig. 9. Simulated EEG recordings for a loop of length 100. The upper recording corresponds to high noise, the lower to medium noise.
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can speculate that the phenomenon can be connected
to the EEG waves for two reasons. First, the selected
eigenfrequencies shift towards the lower range for
decreasing noise intensity. Secondly, the amplitude
of a simulated EEG recording decreases with noise
intensity.

The ‘EEG waves’ were simulated the following
way: the individual ‘recordings’ of all LCDs in the
chain were averaged, for several Poisson processes at
the entrance:

L

² :EEG t s Q t 20Ž . Ž . Ž .Ý Poisson processesn
ns0

Averaging over Poisson processes means that we run
the simulation with several realizations of the Pois-
son process at the entrance of the chain, and average
the results. Finally a running average was calculated

Ž .on the resulting averaged recordings, to eliminate
Žhigh-frequency components this is also done by

.EEG recorders in practice . The simulated ‘record-
ings’ can be seen in Fig. 9.

Supposing that being awake and sleep represent
different noise environments, the frequency shift and
amplitude increase of the EEG waves are explained
by this simple model.

Further investigation is needed to study the bio-
logical validity of the introduced phenomena. There
is no theory up to this point explaining these interest-
ing effects. Further research goals include study of
the response of a loop to periodic driving. The
response of the loop is to be dependent on the
driving frequency, and new resonance effects are to
be expected.
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