
CHAOS VOLUME 11, NUMBER 3 SEPTEMBER 2001
Spatiotemporal stochastic resonance and its consequences
in neural model systems
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László B. Kish
Department of Materials Science, The Angstrom Laboratory, Uppsala University, P.O. Box 534,
Uppsala, SE-75121, Sweden

Frank E. Moss
Center for Neurodynamics, University of Missouri, St. Louis, 8001 Natural Bridge Road, St. Louis,
Missouri 63121-4499

~Received 18 December 2000; accepted 4 April 2001; published 31 August 2001!

The realization of spatiotemporal stochastic resonance is studied in a two-dimensional FitzHugh–
Nagumo system, and in a one-dimensional system of integrate-and-fire neurons. We show that
spatiotemporal stochastic resonance occurs in these neural model systems, independent of the
method of modeling. Moreover, the ways of realization are analogous in the two model systems. The
biological implications and open questions are discussed. ©2001 American Institute of Physics.
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Biological neurons are nonlinear„i.e., threshold… devices.
Therefore neural systems are in the focus when looking
for realizations of stochastic resonance„SR… or spa-
tiotemporal stochastic resonance„STSR…, both of which
occur in systems possessing a threshold. There are tw
different ways to simulate neural systems. The first is
based on the FitzHugh–Nagumo „FN… equations, the sec-
ond is based on a simple integrate-and-fire„IF … model. In
this article the effect of noise on neural systems will be
discussed using both ways of modeling. The results sug
gest that SR and STSR do occur in models of neura
systems, independent of the model used. This means tha
an optimal noise intensity can maximize signal transmis-
sion through such systems. How significant is the role
played by these phenomena and what implications they
might have for neurobiology, is still an open question.

INTRODUCTION

Stochastic resonance~SR! is a paradox-phenomenon i
which an optimal noise intensity maximizes the signal tra
fer through a nonlinear device.1–7A generalization of SR has
been introduced recently: spatiotemporal stochastic re
nance ~STSR!. The essence of STSR is that perturbati
propagation in extended systems is optimized by noise.6,8,9

Excitable media are systems of diffusively coupled no
linear elements, usually governed by a system of nonlin
partial differential equations. These systems show interes
features, e.g., spiral wave formation and STSR.10,11

Spiral waves have been shown to propagate in a var
of systems. Wave propagation in such media is of spe
interest because it is at the confluence of many ‘‘hot’’ topi
Belousov–Zhabotinsky reactions in chemical systems,10–13

calcium dynamics in astrocyte cultures,14 and perturbation
5631054-1500/2001/11(3)/563/7/$18.00
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propagation in noisy nonlinear systems.9 In the following
paragraphs, a description of three different excitable med
given, where spiral waves have been observed.

It has been demonstrated8 that wave propagation in an
excitable chemical medium can be supported by noise in
case of the Belousov–Zhabotinsky~BZ! reactions.12,13 The
excitability is governed by the presence of a light-sensit
catalyst for the reaction. Above the threshold the waves
of the reaction-diffusion type. The wave front moves throu
the medium consuming the BZ catalyst, and leaving in
wake a region of depleted material which is incapable
reaction. The waves have a characteristic shape: that
propagating single or double spiral. In excitable media,
rameters are such that a small disturbance anywhere in
medium results in a wave which propagates out from
disturbed location for an indefinite time and distance. In s
excitable media, however, disturbances do not propagate
instead die out a short distance/time from the original lo
tion.

This picture changes drastically if noise is added to
light intensity. Even in the subexcitable regime, the propa
tion of waves is supported now by the noise and an optim
noise intensity can result in sustained waves which propa
indefinitely. This is called STSR.8,9 Figure 1 illustrates this
phenomenon, which has also been proven by computer s
lations, using a two-dimensional network of elements, g
erned by the so-called ‘‘Oregonator’’15 equations. The ele-
ments were coupled to their four nearest neighbors, thro
diffusive terms added to the following system of different
equations:

du

dt
5

1

e
~qw2uw1u2u2!, ~1a!
© 2001 American Institute of Physics
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FIG. 1. Images of wave segments traveling through a BZ medium, perturbed by increasing noise intensity starting from 0 and reaching a maxim
permitted by the experiment.~a! No noise;~b! small noise;~c! optimal noise;~d! too strong noise~causing wave fragmentation!. @Reproduced from P. Jung
A. Cornell-Bell, F. Moss, S. Ka´dár, and K. Showalter, Chaos8, 567–575~1998!, with permission.#
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dw

dt
5

1

d
~f2qw2uw1 f v !, ~1b!

dv
dt

5u2v, ~1c!

where the variables areu, v, and w; f is the excitability
parameter.

One of the first successful attempts to initiate spi
waves used a neural network.16,17 Neurons arethreshold el-
ements, with nonlinear transfer properties as required for S
phenomena. They can be excited through their proce
calleddendritesand transmit the information farther throug
their axon via impulses calledaction potentials. The excita-
tion takes place by the release of chemicals calledneu-
rotransmittersin the junctions~synapses! between the excit-
ing neuron’s axon and the excited neuron’s dendrite. T
chemicals are stored in small containers calledvesiclesnear
the end of the axon. When an action potential arrives to
end of an axon, Ca21 ions enter through the membrane a
cause the release of the neurotransmitter into the syna
After diffusing through the synaptic cleft, the neurotransm
ter binds to the membrane of the excited cell, causing de
larization. The depolarization happens in quanta~in steps!,
the contribution of each vesicle being approximately equ
The quanta of depolarization are calledexcitatory postsynap
tic potentials (EPSPs). The EPSPs arriving successive
from different dendrites within a certaintime constantspe-
cific to the neuron are summed. If the resulting depolari
tion reaches the threshold, an action potential is genera
After the generation of the action potential the neuron en
an unexcitable state called therecovery period.18

In the central nervous system besides various type
neurons there are cells responsible for nutrition, contro
blood supply, and support calledastrocytesor glia. The as-
trocytes are similar to neurons from several points of vie
First, both types of cells develop from the same original c
in the human fetus. The astrocytes envelop synapses in
brain, and they are depolarized by specific neurotransmit
released by the neurons. If the depolarization reache
threshold, the astrocytes enter a different state~just like neu-
rons!, in which their free Ca21 concentration increase
abruptly. This causes the increase of the Ca21 concentration
in the cytoplasm of neighboring astrocytes. It has been
covered recently that this mechanism can also lead to
generation of spiral waves in astrocyte cultures.14 The spiral
waves that were initiated showed similar features to the o
found in the chemical~BZ! system. A quantitative analysi
showed self-organized criticality in both cases.9,19
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The purpose of the present paper is to study STSR
two different ~FN and IF! neuron model systems. SR ha
been shown to be a property of single neurons for both ty
of models.20,21Our results indicate that STSR is also a pro
erty of both systems. It is important to mention that while
our FN system the coupling is bidirectional, in the IF syste
it is only unidirectional. Therefore, the first can model exc
able systems in general~and astrocyte cultures in particular!,
while the latter is mainly suitable to model chains of neuro
in peripheral nerves. Nevertheless, the fact that STSR
property of both systems reveals some deep similarity
tween general excitable systems and unidirectionally coup
neurons. The implications of the observed phenomena
be outlined in the final section. The paper concludes w
open questions.

FITZHUGH–NAGUMO EQUATIONS

A two-dimensional lattice of elements governed by t
FN equations has been considered,

e
dv
dt

5v~a2v !~v21!2w, ~2a!

dw

dt
5v2dw2b, ~2b!

where the variables arev and w, while the excitability pa-
rameter isb. v corresponds to the voltage across the me
brane, andw controls the recovery period. The rest of th

FIG. 2. Solutions of the FN equations in the nonoscillatory regime.~Top!
Simple decay to stationary value.~Bottom! Decay to stationary value pre
ceded by one oscillation.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



565Chaos, Vol. 11, No. 3, 2001 Spatiotemporal stochastic resonance
FIG. 3. Spiral wave initiation and
propagation.
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parameters were kept constant,e50.005, a50.5, and d
51.0. This pair of equations was originally created to mo
neuron dynamics.22,23 Depending on the value of the exci
ability parameterb the system has two kinds of solutions.
b.0.26 the solution is oscillatory~independent of the initia
value ofv andw). On the other hand, ifb,0.26 the solution
decays and reaches a stationary value. The way the statio
value is reached in this regime depends on the initial val
of v and w. If the initial values are far from the stationar
values, the relaxation can happen through an oscillation, c
sisting of a rapid rise to a maximum, followed by a recove
period. If they are close to the stationary values, the deca
monotonous. The closer we approach the critical value ob,
the less deviation is needed to initiate an oscillation. V
close to the criticalb even damped oscillations can be o
served. Therefore the equations inherently contain a thr
old. The threshold is the minimum difference from the s
tionary values for which an oscillation can already
observed. Throughout the following simulations we used
nonoscillating~subexcitable and excitable! regime~see Fig.
2!.

If a diffusive term of the form¹2v is added to the first
equation, the spatial propagation of a perturbation beco
possible. The perturbation propagates as a single or do
spiral wave through the medium. Depending on the excita
ity parameterb, and the diffusion coefficientD, the waves
are either supported or they vanish after traveling a sh
distance. Thus, the system can besubexcitable~if wave
propagation is inhibited! or excitable~if wave propagation is
supported!. The third regime calledhyperexcitableis charac-
terized by global, synchronized oscillations of all elemen
and will not be discussed here. An example of spiral wa
propagation is shown in Fig. 3. We generated Fig. 3 as
lows: first, a straight wavefront was initiated, by setting t
Downloaded 12 Aug 2002 to 165.124.225.24. Redistribution subject to AI
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initial values within a thin vertical area on the right edge
the system above the threshold. The straight wavefront
allowed to propagate freely until both ends of it are cut o
From that time on, the two points where the ends were
off each became the centers of a spiral.

The medium was chosen to be excitable, withb
50.245. If the same experiment were repeated in a sub
citable medium~e.g., b50.2017), spiral wave formation
could not be observed; instead, the straight wave segm
remaining after cutoff would shrink and disappear co
pletely @see Fig. 4~b!# .

If a spatiotemporal noise is added, however, the wa
propagation can be sustained even in the subexcitable
gime. In Fig. 4 the waves are initiated in an excitable a
whereb favors wave propagation (b50.245). Later they en-
ter a subexcitable area, whereb causes wave decay (b
50.2017). The diffusion coefficient was defined such th
D/Dx2Dt564. The images were created by overlayi
phases of wave propagation at regular time intervals~600
time steps!. The length of the system was 800 pixels, t
width was 250 pixels. The length of the subexcitable a
was 600 pixels. The fourth-order Runge–Kutta method an
five-point Laplacian propagator were used~connecting each
pixel to its four nearest neighbors!. Free boundaries were
used in the simulations.

The addition of noise changes the system’s respo
drastically. Gaussian spatiotemporal noise was added to
excitability parameterb as follows. The area of propagatio
was divided into small squares of 100 (10310) pixels.
Within each square, the excitability parameter was assign
new random value after every 600 time steps. The rand
values were chosen independently for every square. Wi
each 600 time steps, the excitability values were maintai
constant.
the
the

s
scaled s
FIG. 4. Sequential images of a wave traveling in a medium governed by the FN equations.~a! The setup: the left-hand side of the medium is excitable,
right-hand side is subexcitable. Observe the noise added to the right-hand side.~b! No noise: the wave has propagated to the border and dies out on
right-hand side.~c! Very weak noise: barely helps if at all.~d! Noise of medium intensity: makes waves propagate indefinitely far.~e! Too strong noise: cause
fragmentation of the waves before they can propagate far. The gray scale shades in the images have the following significance: all values are reuch
that the highest value ofv corresponds to ‘‘white’’ and the lowest value ofv corresponds to ‘‘black.’’
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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The intensity of the noise was defined by its stand
deviations,

^j~x,y,t !•j~x8,y8,t8!&

55
s2 for ~x82x,y82y,t82t !P@0,Dx!3@0,Dy!

3@0,D t!

0 for ~x82x,y82y,t82t !¹@0,Dx!3@0,Dy!

3@0,D t!,

~3!

where Dx5Dy510, D t5600, and j(x,y,t) is the noise
value added to the excitabilityb of all 100 pixels in the
square that has its lower right corner located
(Dx•@x/Dx#, Dy•@y/Dy#). The square brackets@x# denote
the integer closest tox, but smaller in value thanx. The
reason for choosing a noise with the property~3! is purely
biological. The 10310 squares correspond to cells~neurons
or astrocytes!. There is evidence that the perturbation swee
unaltered, with constant speed through the cells in the
logical situation.14

Gradually increasing the noise intensity, we observe t
first it helps the waves to propagate farther in the subex
able area. If the noise intensity is too high, it acts against
propagation by causing wave fragmentation. Wave propa
tion is optimized for an optimal noise intensity~see Figs. 4
and 5!. STSR is thus proven for the two-dimensional F
system.

We define the propagation length as the distance trav
by the wave segment in the subexcitable medium after
ends are cut off. In Fig. 5 the propagation length is shown
a function of the noise intensity, for five different values
the excitability b. Notice the presence of a peak in bo
cases, corresponding to the optimal noise intensity.

The computational study of the system governed by
FN equations is important because it can model both ne
and glial tissue. Comparing the spiral wave patterns obse

FIG. 5. Propagation length as a function of noise intensity. Filled circ
b50.1960; filled squares:b50.2000; open circles:b50.2010; open
squares:b50.2015; opentriangles:b50.2020. Notice that the propaga-
tion length was limited by the dimension of the simulated system. Prop
tion lengths shown as 600 are actually larger.
Downloaded 12 Aug 2002 to 165.124.225.24. Redistribution subject to AI
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in experiments with computer simulations, it has been sho
by Junget al. that the glial tissue is a subexcitable mediu
with self-organized criticality.24

INTEGRATE-AND-FIRE MODEL

Because handling nonlinear differential equations on
computer is a rather complicated task we studied a system
simpler elements that still had the basic features of a neu
Such a system can be constructed out of IF neurons w
have the following parameters: threshold (VT), spike length
(TI), recovery period length (TR), memory ~or time con-
stant,t) representing the time for which the neuron ‘‘remem
bers’’ the incoming charge quantaQ0, and excitatory
postsynaptic potential per unit time (Q0) arising in the
postsynaptic neuron after an action potential arrives to
synapse.18 Elements with these properties have been c
nected along a linear chain, as shown in Fig. 6.

All the neurons are passive~they can just transmit a
signal, not generate one!, and are numberedN1 ,N2 ,N3 , . . .
~see Fig. 6!.

The most important parameter that governs the neuro
dynamics is their excitabilityen(t) - an integer number:

~1! If en,2TR the neuron isexcitable;
~2! if 2TR,en,0 the neuron is in arecovery periodand its

output is equal to zero no matter what is the depolari
tion on the input;

~3! if 0 ,en the neuron isexcitedand it is emitting constan
amounts of charge into the synaptic gap.

Every neuronNn has abuffer ~or memory!, where it can
accumulate the charge quanta emitted by neuronn21. If
neuronn21 is excited, the charge in the buffer of neuronn
is increased byQ0 every time step. We consider the capa
tance of the neuron unitary, thus the accumulating cha
corresponds to an increasing voltage of equal value. Depe
ing on its excitabilityen , neuronn behaves as follows:

~a! If neuronn is excitable (en,2TR), the voltageVn(t)
in its buffer is compared to the threshold voltageVT . If
the voltageVn(t) exceeds the thresholdVT , the excit-
ability en is reset toTI , and the voltage in the buffer is
reset to 0:en5TI andVn(t)50 if Vn(t)5VT . If Vn(t)
is below the threshold (Vn(t),VT), the value of the
excitability is decreased:en5en21. If neuronn21 is
in the excited state, an amount of chargeQ0 enters the
buffer of neuronn during each time step.

~b! If neuron n is excited (0,en), it attempts to inject
charge amountsQ0 into neuronn11 during each time
step, for a timeTI . This is calledspiking. Neuron
n11 takes up this charge if it hasen11,2TR . Neu-
ron n cannot accept charge, independent of the stat

:

a-

FIG. 6. Neuron chain. The coupling is unidirectional.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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neuronn21. The buffer stays empty and the excitab
ity is decreased during every time step:Vn(t)50 and
en5en21.

~c! If neuronn is in the recovery period, it does not acce
charge from neuronn21, independent ofen21 . The
buffer is kept empty and the excitability decreases w
each time step:Vn(t)50 and en5en21. This state
lasts for a timeTR .

In addition to the described dynamics, a Gaussian no
term jn(t) is added to the buffer of thenth neuron at every
time step, with the property

^jn~ t !•jm~ t8!&5H s2 for m5n andt5t8

0 form5” n or t5” t8.
~4!

The intensity of this noise term is given by its standard
viation s.

The neuron model presented here is similar in its nat
to the IF model of neuroscience~the buffer in fact integrates
the incoming charge over a time intervalt). This model is,
however, even more simplified; while the usual definition
the time constant corresponds to an exponential decay,
the decay has the form of a step-function. The neuroncom-
pletely ‘‘remembers’’ any amount of charge that entered
buffer within the lastt time steps,

Q~ t !5Q0~ t !•e2~ t/t!→Q~ t !5Q0~ t !•H~t2t !, ~5!

whereH(t2t) is the Heaviside step-function.
The neuron chain described above operates as prese

in Fig. 7, where the response to an incoming random burs
spikes is shown. Notice that in the absence of incom
spikes, voltage variation in the buffer is a random wa
originating from the integral of the white noise in~4!. The
voltage in the buffer increases abruptly after a spike is
ceived, and is set to 0 during the outgoing spike and
recovery period. A similar two-dimensional model has be
used for the definition of STSR in 1995.25 The present mode
has the following new features:

FIG. 7. Propagation of a burst of spikes.~a! The spike burst that arrives into
the buffer of neuronN1 ; ~b! the value of the voltage in the buffer~the
threshold isVT51500); ~c! the excitability of the neuron;~d! the burst of
spikes leaving neuronN1 .
Downloaded 12 Aug 2002 to 165.124.225.24. Redistribution subject to AI
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~i! The spikes fired by the neurons are no longer de
functions. They are rather square pulses of amplitu
Q0 and of durationTI .

~ii ! The neurons have a memory~buffer! that stores all the
charge quanta arrived within the lastt time steps. The
charge quanta are ‘‘forgotten’’ completely if they a
rived beforet2t.

We feed the above-described system with a periodic serie
bursts, generated by threshold-crossing of a noisy sinus fu
tion as follows. Gaussian white noise was added to a si
function. The threshold was set above the amplitude of
sinus function and a spike was generated every time
noisy sinus function crossed the threshold in the upwa
direction. Two spikes never followed each other less that
apart.

If Q0 exceeds acritical value, the perturbation propa
gates with no loss along the chain. All neurons will gener
the same series of spikes, with some time delay. For sm
Q0 , the perturbation is not propagated farther than neuro
For subcritical values ofQ0 , close to the critical value, ther
can be a few neurons that propagate spikes, depending o
value of the time constantt. By adding Gaussian white nois
to each of the synapses, the propagation of the input ca
extended along the chain even ifQ0 is subcritical. This noise
can arise biologically from the neuron itself or from spik
generated by other neurons. It is an internal noise in
sense that it arises inside the organism during informa
processing.

The system is set up such that noise is necessary
propagation at any ‘‘synapse’’ (Q0 is subcritical!. This is
realized by adjustingQ0 , and keeping the intensity of th
noise equal to 0. The signal transmission quality along
chain is defined as the signal to noise ratio at the basic
quency of the sinus function,

SNR5
S2N

N
, ~6!

whereS andN are the signal power and the noise power
the basic frequency, respectively. With the help of this qu
tity it is possible to study the signal propagation along t
neuron chain.

First, the input is a periodic series of spike bursts, a
these bursts follow more or less the peaks of the sinus fu
tion. The neurons located farther from the input will tend
fire when the previous neuron fired. As the spike ser
propagates farther along the chain, the resemblance with
input becomes weaker and weaker~see Fig. 8!. Although the
noise we add toQ0 at the synapses helps the input (N0) to
extend its effect over to neurons located farther and farthe
also causes the SNR to decrease along the chain by scatt
and loss of spikes.

We define the ‘‘propagation length’’ as the number of t
neuron where SNR becomes less than 1.5 for the first ti
In Fig. 9, the value of the SNR is shown as a function of t
distance from the input for three different noise intensities
Fig. 10 the dependence of the propagation length on
noise intensity can be seen. Notice that the largest valu
the propagation length is obtained for an intermediary no
intensity.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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Although the SNR decays with distance along the ch
of neurons, according to Fig. 10 there is an optimal no
intensity~approximately 70!, for which the signal propagate
the farthest. Therefore this simple model shows the phen
enon of STSR. The shape of the STSR curve depends onQ0 ,
that is, for higherQ0 the peak becomes higher and its loc
tion moves toward zero noise intensity. For supercriticalQ0 ,
there is no peak, just a simple decay.

The analogy between the realization of STSR within
present~IF! and the previous~FN! model is noticeable. In
both cases the propagation length reaches a maximum fo
optimal noise intensity, provided the system is in the sub
citable regime of operation.

One of the subtleties that must be noted is that sig
transmission strongly depends on the filling factor of t
spike series at the entrance. The filling factor can be defi

FIG. 8. Spike propagation along the chain. The spike series is shown a
input (N0) and neuronsN2 , N4 , N6 , on the left. The corresponding powe
spectra are shown on the right. Notice that the periodicity of the spike se
is destroyed by randomization and loss of spikes as it propagates dow
chain.

FIG. 9. The decay of SNR along the chain for different noise intensities~the
vertical axis has logarithmic scale!. The noise intensities were: 10~dashed
line!, 60 ~solid line!, 150~dashed–dotted line!. Notice that the signal propa
gation is optimal for a noise intensity equal to 60.
Downloaded 12 Aug 2002 to 165.124.225.24. Redistribution subject to AI
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as the mean duration of a burst divided by the period of
sinus function used to generate the bursts. According to R
26 the filling factor is what determines the degree to whic
stochastic resonator can improve the SNR. For low value
the filling factor there is good transmission, for high valu
the transmission becomes worse. This point seems to b
crucial importance, since as the filling factor approaches
the propagation length approaches 0. Based on the ab
mentioned reference, the conditions for optimal wave pro
gation can be determined; at the entrance there must
perfectly periodic impulse train with low filling factor; the
buffer of the neurons has to be very small andQ0 close to the
threshold. Indeed, with such setup we obtained propaga
lengths in the range of hundreds of neurons away from
input.

CONCLUSIONS AND OPEN QUESTIONS

The general conclusion is that STSR is a basic featur
both neural model systems that we studied. In both mod
there was an optimal noise intensity which maximized sig
transmission. The explanation lies in the common feature
the two models: both are a network of interconnected n
linear ~threshold! elements.

The question is whether the same phenomenon hap
in reality. Or, in other words, does nature take advantage
STSR ~or SR! to propagate signals more efficiently? Is
possible that living organisms use STSR and SR, but t
have tuned their noise~and many other parameters! through
adaptation and millions of years of evolution to the optim
value?

Despite the fact that SR has been found experiment
in sensory neurons and external noise,27–29SR effects due to
internal noise are very difficult to observe in living neur
systems,27,30,31because the tuning of the internal noise inte
sity causes the cell’s parameters to change drastically.

Therefore there seems to be no direct way of proving
existence of STSR~or SR! in biological systems by using

he

es
the

FIG. 10. Propagation length as function of noise intensity. The parame
used wereVT51500, TI55, TR55, t530, Q05290 ~300 is the critical
value!.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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their internal noise. It is questionable whether or not inter
noise plays a constructive role in biology. In order to answ
this question we need to turn to indirect ways of stu
Hence the next question is: Even if it is not possible to ‘‘r
produce’’ SR in biological systems by tuning their intern
noise, can we simulate well-known biological~or medical!
phenomena by using noisy subexcitable systems? S
waves involve periodic, simultaneous activation of dista
elements of the neural network, so one can try to mak
connection to evoked potentials, EEG signals,32 etc. An at-
tempt in this direction was made in Ref. 33.

The present paper contains only numerical findings.
important open question is to find a theoretical explanat
of the observed phenomena. Experiments confirming our
sults are also desired. If the existence of STSR in ne
systems is proven experimentally, it might become poss
to use noise to help patients suffering of synapse diseas
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