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The realization of spatiotemporal stochastic resonance is studied in a two-dimensional FitzHugh—
Nagumo system, and in a one-dimensional system of integrate-and-fire neurons. We show that
spatiotemporal stochastic resonance occurs in these neural model systems, independent of the
method of modeling. Moreover, the ways of realization are analogous in the two model systems. The
biological implications and open questions are discussed20@1 American Institute of Physics.
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Biological neurons are nonlinear(i.e., threshold devices.  propagation in noisy nonlinear systeth#n the following
Therefore neural systems are in the focus when looking paragraphs, a description of three different excitable media is
for realizations of stochastic resonance(SR) or spa-  given, where spiral waves have been observed.
tiotemporal stochastic resonancgSTSR), both of which It has been demonstrafethat wave propagation in an
occur in systems possessing a threshold. There are two excitable chemical medium can be supported by noise in the
different ways to simulate neural systems. The first is case of the Belousov—ZhabotinskBZ) reactions->3 The
based on the FitzHugh-Nagumo (FN) equations, the sec- excitability is governed by the presence of a light-sensitive
ond is based on a simple integrate-and-fir¢lF) model. In  catalyst for the reaction. Above the threshold the waves are
this article the effect of noise on neural systems will be of the reaction-diffusion type. The wave front moves through
discussed using both ways of modeling. The results sug- the medium consuming the BZ catalyst, and leaving in its
gest that SR and STSR do occur in models of neural wake a region of depleted material which is incapable of
systems, independent of the model used. This means that reaction. The waves have a characteristic shape: that of a
an optimal noise intensity can maximize signal transmis- propagating single or double spiral. In excitable media, pa-
sion through such systems. How significant is the role rameters are such that a small disturbance anywhere in the
played by these phenomena and what implications they medium results in a wave which propagates out from the
might have for neurobiology, is still an open question. disturbed location for an indefinite time and distance. In sub-
excitable media, however, disturbances do not propagate, but
instead die out a short distance/time from the original loca-
tion.

This picture changes drastically if noise is added to the
) ) TR - o ) light intensity. Even in the subexcitable regime, the propaga-
which an optimal noise mtelns_l;y maximizes t.he signal transsion of waves is supported now by the noise and an optimal
fer through a nonlinear device: A generalization of SR has ;g6 intensity can result in sustained waves which propagate
been introduced recently: spatiotemporal stochastic reSQhdefinitely. This is called STSR? Figure 1 illustrates this

nance(STSR. The essence of STSR is that pertg%g:tionphenomenon, which has also been proven by computer simu-
propaga_ltlon n ext_ended systems is C?p“ff_“zed by n * lations, using a two-dimensional network of elements, gov-
Excitable media are systems of diffusively coupled NON-gnaq by the so-called “Oregonatdf equations. The ele-

linear elements, usually governed by a system of nonlineag,qnts were coupled to their four nearest neighbors, through
partial differential equations. These systems show interestingis sive terms added to the following system of differential
features, e.g., spiral wave formation and ST8&. equations:

Spiral waves have been shown to propagate in a variety
of systems. Wave propagation in such media is of special
interest because it is at the confluence of many “hot” topics;

INTRODUCTION

Stochastic resonand&R) is a paradox-phenomenon in

Belousov—Zhabotinsky reactions in chemical systéts du _ 1( We U U= U2) (1a
calcium dynamics in astrocyte culturfsand perturbation dt e q '
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FIG. 1. Images of wave segments traveling through a BZ medium, perturbed by increasing noise intensity starting from 0 and reaching a maximum level
permitted by the experimenta) No noise;(b) small noise;(c) optimal noise;(d) too strong noisécausing wave fragmentatiniReproduced from P. Jung,
A. Cornell-Bell, F. Moss, S. Kaar, and K. Showalter, Chad® 567—575(1998, with permission]

dw 1 The purpose of the present paper is to study STSR in
Tt = s(eaw—uw+fo), (1b)  two different (FN and IF neuron model systems. SR has
been shown to be a property of single neurons for both types
dv of models?®?* Our results indicate that STSR is also a prop-
FTE (10 erty of both systems. It is important to mention that while in

our FN system the coupling is bidirectional, in the IF system
where the variables are, v, andw; ¢ is the excitability it is only unidirectional. Therefore, the first can model excit-
parameter. able systems in gener@nd astrocyte cultures in particular
One of the first successful attempts to initiate spiralwhile the latter is mainly suitable to model chains of neurons
waves used a neural network:’ Neurons arehreshold el-  in peripheral nerves. Nevertheless, the fact that STSR is a
ementswith nonlinear transfer properties as required for SRproperty of both systems reveals some deep similarity be-
phenomena. They can be excited through their processegeen general excitable systems and unidirectionally coupled
calleddendritesand transmit the information farther through neurons. The implications of the observed phenomena will

their axon via impulses calledction potentialsThe excita-  be outlined in the final section. The paper concludes with
tion takes place by the release of chemicals called-  open questions.

rotransmittersin the junctions(synapsesbetween the excit-

ing neuron’s axon and the excited neuron’s dendrite. The|TZHUGH-NAGUMO EQUATIONS
chemicals are stored in small containers caltediclesnear
the end of the axon. When an action potential arrives to th
end of an axon, Ca ions enter through the membrane and
cause the release of the neurotransmitter into the synapse. dv

A two-dimensional lattice of elements governed by the
?—N equations has been considered,

Atfter diffusing through the synaptic cleft, the neurotransmit- ~ €'q¢ =V (@a—v)(v—1)—w, (2a)
ter binds to the membrane of the excited cell, causing depo-
larization. The depolarization happens in quafitasteps, d—W=v—dW—b (2b)

the contribution of each vesicle being approximately equal.  dt
The quanta of depolarization are callextitatory postsynap-

tic potentials (EPSPs)The EPSPs arriving successively rameter ish. v corresponds to the voltage across the mem-

from different dendrites within a certaitime constanspe- .
o : .__brane, andw controls the recovery period. The rest of the
cific to the neuron are summed. If the resulting depolariza-

tion reaches the threshold, an action potential is generated.
After the generation of the action potential the neuron enters T T T T g T : T :
an unexcitable state called thecovery perioolS P X 1 ......... e .......... e .......... .......... ....... AAAAAAAAAA ........ 4
In the central nervous system besides various types 0'§ : : : : :
neurons there are cells responsible for nutrition, control ofs
blood supply, and support callestrocytesor glia. The as- Soass|-
trocytes are similar to neurons from several points of view. : , . : : : . :
First, both types of cells develop from the same original cell 0 02 04 06 08 1 12 14 16 13 2
in the human fetus. The astrocytes envelop synapses in th time (arb. units)
brain, and they are depolarized by specific neurotransmitters 1.5
released by the neurons. If the depolarization reaches i

where the variables are andw, while the excitability pa-

threshold, the astrocytes enter a different s(atst like neu- %
rong, in which their free C&" concentration increases 3 05
abruptly. This causes the increase of thé Ceoncentration ~§

in the cytoplasm of neighboring astrocytes. It has been dis-

covered recently that this mechanism can also lead to the -0.5—- 0‘4 Yy 0‘8 ; 152 1i4 156 1i8 5
generation of spiral waves in astrocyte cultu¥éZhe spiral time (arb. units)

Waves.that were m!tlated showed similar fe:’_;ltures to the (_)neEIG. 2. Solutions of the FN equations in the nonoscillatory regitfiep)
found in the chemicalBZ) system. A quantitative analysis simple decay to stationary valuéBottom) Decay to stationary value pre-

showed self-organized criticality in both cases. ceded by one oscillation.
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4 FIG. 3. Spiral wave initiation and
propagation.

parameters were kept constart=0.005, a=0.5, andd initial values within a thin vertical area on the right edge of
=1.0. This pair of equations was originally created to modelthe system above the threshold. The straight wavefront was
neuron dynamicé>?® Depending on the value of the excit- allowed to propagate freely until both ends of it are cut off.
ability parameteb the system has two kinds of solutions. If From that time on, the two points where the ends were cut
b>0.26 the solution is oscillatorgindependent of the initial off each became the centers of a spiral.
value ofv andw). On the other hand, i< 0.26 the solution The medium was chosen to be excitable, wibh
decays and reaches a stationary value. The way the stationary0.245. If the same experiment were repeated in a subex-
value is reached in this regime depends on the initial valuesitable medium(e.g., b=0.2017), spiral wave formation
of v andw. If the initial values are far from the stationary could not be observed; instead, the straight wave segment
values, the relaxation can happen through an oscillation, coremaining after cutoff would shrink and disappear com-
sisting of a rapid rise to a maximum, followed by a recoverypletely [see Fig. 4b)].
period. If they are close to the stationary values, the decay is If a spatiotemporal noise is added, however, the wave
monotonous. The closer we approach the critical valule, of propagation can be sustained even in the subexcitable re-
the less deviation is needed to initiate an oscillation. Verygime. In Fig. 4 the waves are initiated in an excitable area
close to the criticab even damped oscillations can be ob- whereb favors wave propagatiorb& 0.245). Later they en-
served. Therefore the equations inherently contain a thresher a subexcitable area, whete causes wave decayb (
old. The threshold is the minimum difference from the sta-=0.2017). The diffusion coefficient was defined such that
tionary values for which an oscillation can already beD/Ax?At=64. The images were created by overlaying
observed. Throughout the following simulations we used theohases of wave propagation at regular time intery&0
nonoscillating(subexcitable and excitableegime (see Fig. time steps The length of the system was 800 pixels, the
2). width was 250 pixels. The length of the subexcitable area
If a diffusive term of the formV?y is added to the first was 600 pixels. The fourth-order Runge—Kutta method and a
equation, the spatial propagation of a perturbation becomd#ve-point Laplacian propagator were us@bnnecting each
possible. The perturbation propagates as a single or doubfgxel to its four nearest neighbgrsFree boundaries were
spiral wave through the medium. Depending on the excitabilused in the simulations.
ity parameterb, and the diffusion coefficienD, the waves The addition of noise changes the system’s response
are either supported or they vanish after traveling a shortirastically. Gaussian spatiotemporal noise was added to the
distance. Thus, the system can bebexcitable(if wave  excitability parameteb as follows. The area of propagation
propagation is inhibitedor excitable(if wave propagation is was divided into small squares of 100 (4@0) pixels.
supportedl The third regime calletiyperexcitables charac-  Within each square, the excitability parameter was assigned a
terized by global, synchronized oscillations of all elementspnew random value after every 600 time steps. The random
and will not be discussed here. An example of spiral wavevalues were chosen independently for every square. Within
propagation is shown in Fig. 3. We generated Fig. 3 as foleach 600 time steps, the excitability values were maintained
lows: first, a straight wavefront was initiated, by setting theconstant.

b. C.

T

d. e.

FIG. 4. Sequential images of a wave traveling in a medium governed by the FN equédjoFise setup: the left-hand side of the medium is excitable, the
right-hand side is subexcitable. Observe the noise added to the right-handbgitle noise: the wave has propagated to the border and dies out on the
right-hand side(c) Very weak noise: barely helps if at altl) Noise of medium intensity: makes waves propagate indefinitelygafoo strong noise: causes
fragmentation of the waves before they can propagate far. The gray scale shades in the images have the following significance: all values arehrescaled s
that the highest value af corresponds to “white” and the lowest value ofcorresponds to “black.”
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00 2 )1 é 8 Because handling nonlinear differential equations on the
noise intensity (arb. units) x 107 computer is a rather complicated task we studied a system of

simpler elements that still had the basic features of a neuron.
FIG. 5. Propagation length as a function of noise intensity. Filled circles:Such a system can be constructed out of IF neurons which

b=0.1960; filed squares:p=0.2000; open circle_s:b=0.2010; open  have the foIIowing parameters: threshoMTQ, spike Iength
squaresbh=0.2015; opertriangles:b=0.2020. Ndice that the propaga-

tion length was limited by the dimension of the simulated system. Propaga(T|)’ recovery pe.r'Od len.gthT(R)' m_emory (or time con-
tion lengths shown as 600 are actually larger. stant,r) representing the time for which the neuron “remem-

bers” the incoming charge quant®, and excitatory
postsynaptic potential per unit timeQg) arising in the

i i ) i ) CEostsynaptic neuron after an action potential arrives to the
The intensity of the noise was defined by its standar ynapsé® Elements with these properties have been con-

deviationa, nected along a linear chain, as shown in Fig. 6.
T All the neurons are passivéhey can just transmit a
(€06y,1)- 60y signal, not generate opeand are numbereN;,N,,Ns, . ..
o? for (x'—x,y' —y,t'=t)e[0A,)X[0A,) (see Fig. 6.
X[0,A)) The most important parameter that governs the neurons’

= ?) dynamics is their excitabilitg,(t) - an integer number:
0 for(x'—xy'—yt'—t)&[0,A,)X[0Ay)
(1) If e,<—Tg the neuron iexcitable

X[0.Ay), (2) if —Tgr<e,<O0 the neuron is in acovery periodand its
where A,=A,=10, A,=600, and£(x,y,t) is the noise output is equal to zero no matter what is the depolariza-
X y 1 1 1 1 . . .
value added to the excitabilitp of all 100 pixels in the tion on the input; o
square that has its lower right comer located at(3 if 0<e, the neuron .|sexcnedand it is emitting constant
(Ax-[x/A,], Ay-[y/A,]). The square brackefs<] denote amounts of charge into the synaptic gap.

the integer closest ta, but smaller in value thax. The

reason for choosing a noise with the propei@y is purely accumulate the charge quanta emitted by neurerl. If

biological. The 1610 squares correspond to ceffwurons neuronn—1 is excited, the charge in the buffer of neunon

or astrocytep There is evidence that the perturbation sweeps

unaltered, with constant speed through the cells in the bio'—S Increased by, every time step. We consider the capaci-

logical situation tance of the neuron unitary, thus the accumulating charge

Gradually increasing the noise intensity, we observe tha(forresponds to an increasing voltage of equal value. Depend-

first it helps the waves to propagate farther in the subexcit™'9 " its excitabilitye,, neuronn behaves as follows:

able area. If the noise intensity is too high, it acts against théa) If neuronn is excitable ¢,<—Tg), the voltageV,(t)

Every neuronN,, has abuffer (or memory, where it can

propagation by causing wave fragmentation. Wave propaga-  in its buffer is compared to the threshold voltage. If
tion is optimized for an optimal noise intensitgee Figs. 4 the voltageV,(t) exceeds the threshol;, the excit-
and 5. STSR is thus proven for the two-dimensional FN ability e, is reset toT, , and the voltage in the buffer is
system. reset to 0e,=T, andV,(t)=0 if V,(t)=V+. If V(1)

We define the propagation length as the distance traveled is below the threshold\{,(t)<Vy), the value of the
by the wave segment in the subexcitable medium after its excitability is decreased,=e,— 1. If neuronn—1 is
ends are cut off. In Fig. 5 the propagation length is shown as in the excited state, an amount of chaf@g enters the

a function of the noise intensity, for five different values of buffer of neuronn during each time step.
the excitability b. Notice the presence of a peak in both (b) If neuronn is excited (G<e,), it attempts to inject
cases, corresponding to the optimal noise intensity. charge amount®, into neuronn+ 1 during each time

The computational study of the system governed by the step, for a timeT,. This is calledspiking Neuron
FN equations is important because it can model both neural  n+1 takes up this charge if it has,,;<—Tg. Neu-
and glial tissue. Comparing the spiral wave patterns observed  ronn cannot accept charge, independent of the state of

Downloaded 12 Aug 2002 to 165.124.225.24. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



Chaos, Vol. 11, No. 3, 2001 Spatiotemporal stochastic resonance 567

400 T T - - - T T (i) The spikes fired by the neurons are no longer delta-
functions. They are rather square pulses of amplitude
Qo and of durationT, .

(i)  The neurons have a memaiyuffer) that stores all the
charge quanta arrived within the lastime steps. The
charge quanta are “forgotten” completely if they ar-
rived beforet — 7.

We feed the above-described system with a periodic series of
5 bursts, generated by threshold-crossing of a noisy sinus func-
: tion as follows. Gaussian white noise was added to a sinus

-200 i i i i i i
4007 e function. The threshold was set above the amplitude of the
4. 200} " " " " ” " “ " | sinus function and a spike was generated every time the
noisy sinus function crossed the threshold in the upwards
O 80 100 150 200 250 800 50 400  direction. Two spikes never followed each other less than

apart.
FIG. 7. Propagation of a burst of spikéa) The spike burst that arrives into P If d itical | th turbati
the buffer of neuronNy; (b) the value of the voltage in the bufféthe Qo exceeds aritical value, the perturbation propa-

threshold isVy=1500); (c) the excitability of the neuron(d) the burst of  dates with no loss along the chain. All neurons will generate
spikes leaving neuroN; . the same series of spikes, with some time delay. For small
Qq, the perturbation is not propagated farther than neuron 1.
For subcritical values o, close to the critical value, there
can be a few neurons that propagate spikes, depending on the
value of the time constant By adding Gaussian white noise
to each of the synapses, the propagation of the input can be
extended along the chain ever(}f, is subcritical. This noise
can arise biologically from the neuron itself or from spikes
hgenerated by other neurons. It is an internal noise in the
sense that it arises inside the organism during information
processing.
The system is set up such that noise is necessary for

In addition to the described dynamics, a Gaussian noisBropagation at any “synapse’Q is subcritica). This is

term &,(t) is added to the buffer of theth neuron at every 'ealized by adjusting)o, and keeping the intensity of the
time step, with the property noise equal to 0. The signal transmission quality along the

chain is defined as the signal to noise ratio at the basic fre-

neuronn—1. The buffer stays empty and the excitabil-
ity is decreased during every time stafj;(t)=0 and
e,=e,— 1.

(c) If neuronnis in the recovery period, it does not accept
charge from neurom—1, independent og,_;. The
buffer is kept empty and the excitability decreases wit
each time stepV,(t)=0 ande,=e,—1. This state
lasts for a timeTg.

o? form=nandt=t’ uency of the sinus function
(£alt) En(t)) = , (4 e |
0 form#nort#t’. S—N
: . . . o . SNR= ——, (6)
The intensity of this noise term is given by its standard de- N
viation 0. whereS andN are the signal power and the noise power at

The neuron model presented here is similar in its naturgne pasic frequency, respectively. With the help of this quan-

to the IF model of neurosciendene buffer in fact integrates ity it is possible to study the signal propagation along the
the incoming charge over a time intervgl. This model is, neuron chain.

the time constant corresponds to an exponential decay, heffese bursts follow more or less the peaks of the sinus func-
the decay has the form of a step-function. The newam-  tion The neurons located farther from the input will tend to
pletely “remembers” any amount of charge that entered itSfire when the previous neuron fired. As the spike series

buffer within the lastr time steps, propagates farther along the chain, the resemblance with the
Q(t)=Qp(t)-e~ VI Q(t)=Qq(t)-H(7—t), (5)  input becomes weaker and weaksee Fig. 8 Although the
) o . noise we add t@, at the synapses helps the inpityj to

whereH(7—t) is the Heaviside step-function. extend its effect over to neurons located farther and farther, it

~_The neuron chain described above operates as presentgfl causes the SNR to decrease along the chain by scattering
in Fig. 7, where the response to an incoming random burst of ,4 |0ss of spikes.

spikes is shown. Notice that in the absence of incoming e define the “propagation length” as the number of the
spikes, voltage variation in the buffer is a random walk,ne\ron where SNR becomes less than 1.5 for the first time.
originating from the integral of the white noise {d). The |5 Fig 9, the value of the SNR is shown as a function of the
voltage in the buffer increases abruptly after a spike is registance from the input for three different noise intensities. In
ceived, and is set to O during the outgoing spike and thgg 10 the dependence of the propagation length on the
recovery period. A similar two-dimensional model has beemn,gise intensity can be seen. Notice that the largest value of

used for the definition of STSR in 1995The present model e propagation length is obtained for an intermediary noise
has the following new features: intensity.
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FIG. 8. Spike propagation along the chain. The spike series is shown at the nolse Intensity (arb. units)

input (No) and neurondN,, N4, Ng, on the left. The corresponding power . . o .

spectra are shown on the right. Notice that the periodicity of the spike serie§!G- 10. Propagation length as function of noise intensity. The parameters
is destroyed by randomization and loss of spikes as it propagates down tHleede)W@reVT: 1500, T;=5, Tr=5, 7=30, Qu=290 (300 is the critical
chain. valug.

Although the SNR decays with distance along the chairas the mean duration of a burst divided by the period of the
of neurons, according to Fig. 10 there is an optimal noisesinus function used to generate the bursts. According to Ref.
intensity (approximately 7§ for which the signal propagates 26 the filling factor is what determines the degree to which a
the farthest. Therefore this simple model shows the phenonstochastic resonator can improve the SNR. For low values of
enon of STSR. The shape of the STSR curve depend¥,on the filling factor there is good transmission, for high values
that is, for higherQ, the peak becomes higher and its loca-the transmission becomes worse. This point seems to be of
tion moves toward zero noise intensity. For supercritigg crucial importance, since as the filling factor approaches 0.5,
there is no peak, just a simple decay. the propagation length approaches 0. Based on the above-

The analogy between the realization of STSR within thementioned reference, the conditions for optimal wave propa-
present(IF) and the previougFN) model is noticeable. In gation can be determined; at the entrance there must be a
both cases the propagation length reaches a maximum for grerfectly periodic impulse train with low filling factor; the
optimal noise intensity, provided the system is in the subexbuffer of the neurons has to be very small &glclose to the
citable regime of operation. threshold. Indeed, with such setup we obtained propagation

One of the subtleties that must be noted is that signalengths in the range of hundreds of neurons away from the
transmission strongly depends on the filling factor of theinput.
spike series at the entrance. The filling factor can be defined

CONCLUSIONS AND OPEN QUESTIONS

The general conclusion is that STSR is a basic feature of
both neural model systems that we studied. In both models,
there was an optimal noise intensity which maximized signal
transmission. The explanation lies in the common feature of
the two models: both are a network of interconnected non-
linear (threshold elements.

The question is whether the same phenomenon happens
in reality. Or, in other words, does nature take advantage of
STSR (or SR to propagate signals more efficiently? Is it
possible that living organisms use STSR and SR, but they
have tuned their nois@and many other parametgithrough
adaptation and millions of years of evolution to the optimal

SNR

value?
5 v _ : : : Despite the fact that SR has been found experimentally
10"O 2 "'1 é . 1i0 > 14 in sensory neurons and external ndi5&° SR effects due to
Neuron number internal noise are very difficult to observe in living neural

_ _ o _ systemg/3031hecause the tuning of the internal noise inten-
FIG. 9. The decay of SNR along the chain for different noise intendities

vertical axis has logarithmic scaleThe noise intensities were: 1@ashed sity causes the cell’s parameters to Change drastlcally.

line), 60 (solid line), 150 (dashed—dotted lineNotice that the signal propa- _ Therefore there Seems_to b_e no_direct way of proving the
gation is optimal for a noise intensity equal to 60. existence of STSRor SR in biological systems by using
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their internal noise. It is questionable whether or not internal®s. Kaa, J. Wang, and K. Showalter, Natufeondon) 391, 770-772
noise plays a constructive role in biology. In order to answer_(1998.
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noise, can we simulate well-known biologic@r medical 111994-

: . : - iA. S. Mikhailov and A. Yu. Loskutov,Foundations of Synergetics Il.
?
phenomena by “S_'”g no!sy SUbeXCItable_ SYStems' _SplraIChaos and NoiseSynergetics Series2 (Springer, Berlin, 19911 second
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elements of the neural network, so one can try to make &A. N. Zaikin and A. M. Zhabotinsky, NaturéLondon 225 535-537
connection to evoked potentials, EEG signidlsfc. An at- (1970.

- - - . . 13 i i
tempt in this direction was made in Ref. 33. ’Qggcgu_%e;;?igﬁ'ep' Dechert, and F. W. Schneider, J. Phys. C1&9.
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