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Although several recent studies have focused on gene autoregu-
lation, the effects of negative feedback (NF) on gene expression are
not fully understood. Our purpose here was to determine how the
strength of NF regulation affects the characteristics of gene ex-
pression in yeast cells harboring chromosomally integrated tran-
scriptional cascades that consist of the yEGFP reporter controlled
by (i) the constitutively expressed tetracycline repressor TetR or (ii)
TetR repressing its own expression. Reporter gene expression in
the cascade without feedback showed a steep (sigmoidal) dose–
response and a wide, nearly bimodal yEGFP distribution, giving rise
to a noise peak at intermediate levels of induction. We developed
computational models that reproduced the steep dose–response
and the noise peak and predicted that negative autoregulation
changes reporter expression from bimodal to unimodal and trans-
forms the dose–response from sigmoidal to linear. Prompted by
these predictions, we constructed a ‘‘linearizer’’ circuit by adding
TetR autoregulation to our original cascade and observed a mas-
sive (7-fold) reduction of noise at intermediate induction and
linearization of dose–response before saturation. A simple math-
ematical argument explained these findings and indicated that
linearization is highly robust to parameter variations. These find-
ings have important implications for gene expression control in
eukaryotic cells, including the design of synthetic expression systems.

gene expression noise � gene networks � linearizer �
negative feedback � synthetic biology

Genetically identical cells may be very different in their
protein content (1–7) because of stochastic biochemical

events underlying gene expression (8, 9), random partitioning of
molecules during cell division (10), or different cellular re-
sponses to environmental factors (11). This heterogeneity is
commonly known as ‘‘gene expression noise,’’ and can be either
disadvantageous and subject to reduction (12) or beneficial and
evolutionarily maintained (13, 14) depending on the biological
role of the affected pathways.

Because essentially all genes are parts of transcriptional
networks (15), the characteristics of gene expression depend on
regulatory motifs present in network topology (16). For example,
negative autoregulation is abundant in gene regulatory networks
(17) and possibly subject to evolutionary selection (16, 18)
because of its ability to reduce gene expression noise (19–21) to
speed up gene response times (22), to induce oscillatory gene
expression (23, 24), or to reduce the metabolic cost of protein
production by the minimization of mRNA usage (18). Despite
these findings, the effects of negative feedback (NF) on gene
expression are not fully understood. For example, it was sug-
gested that NF alters the shape of the dose–response curve in
transcriptional cascades (22, 25, 26), but this effect has never
been explored in detail. Such knowledge is vital for the rational
design and characterization of increasingly complex transcrip-
tional networks via bottom-up approaches in synthetic biology
(27–30).

Our goal was to determine how NF regulation affects the
characteristics of gene expression in synthetic transcriptional

cascades. We first constructed a TetR-based transcriptional
cascade with no feedback in Saccharomyces cerevisiae and mea-
sured the noise and mean of gene expression at various inducer
concentrations. Based on the experimentally measured dose–
response, we estimated the biochemical reaction rates and
developed a computational model that reproduced the experi-
mentally observed sigmoidal dose–response and noise peak at
intermediate levels of induction. The computational model
predicted that introducing negative autoregulation into the
cascade reduces the heterogeneity of reporter gene expression
and linearizes the dose–response before saturation. We verified
these predictions by gene expression measurements in a ‘‘lin-
earizer’’ gene circuit built by introducing TetR autoregulation
into the original transcriptional cascade. Additional gene con-
structs using different TetR-repressible promoters indicate that
this gene circuit is highly robust in producing a linear dose–
response and eliminating gene expression heterogeneity at a
wide range of inducer concentrations.

Results
Transcriptional Cascade Without Autoregulation. We built a nega-
tive-regulatory (NR) gene circuit consisting of chromosomally
integrated, separate regulator and reporter parts (Fig. 1A). The
regulator part of this cascade was the TetR repressor (31)
expressed constitutively from the native yeast GAL1 promoter
(PGAL1) in the presence of galactose. The DNA-binding activity
of the TetR repressor can be controlled through the extracellular
concentration of anhydrotetracycline (ATc) that associates with
TetR and blocks its binding to target promoters, thereby en-
abling the expression of target genes. The reporter part of the
NR cascade consisted of the yEGFP gene under the control of
the PGAL1-D12 promoter (9, 14, 32), which can be repressed by
TetR binding to 2 tetO2 sites downstream from the TATA box.

We measured reporter (yEGFP) expression means at increas-
ing ATc concentrations across yeast cell populations using flow
cytometry and observed a sigmoidal (nonlinear) dose–response,
with a steep increase at intermediate induction levels (Fig. 2A).
The gene expression noise (measured as the coefficient of
variation; standard deviation divided by the mean) also peaked
at intermediate levels of ATc (50–90 ng/mL), whereas it dimin-
ished at low and high levels of ATc (Fig. 2C), as observed
previously (9, 32). Analysis of population-distribution histo-
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grams revealed that at intermediate ATc concentrations, cells
switched to the high expression state nonuniformly, giving rise
to highly heterogeneous (bimodal) yEGFP expression and high
levels of noise (Fig. 2D). This represents a potential problem for
synthetic gene expression systems that require tight and graded
control over a wide range of expression levels (33).

To better understand the experimentally observed behavior of
the NR cascade, we developed a computational model based on
a biochemical reaction scheme that incorporates both regulator
and repressor synthesis [see supporting information (SI) Appen-
dix and Figs. S1–S8 for a full description of the model, gene
constructs, and controls, and experimental data]. Using this
model, we ran stochastic simulations to estimate the gene
expression noise for various ATc concentrations. The simulated
gene expression mean and noise agreed well with the experi-
mental data (Fig. 2 A and C). Our simulations suggest that the
noise peak at intermediate ATc concentrations is due to high
repressor noise, further amplified by the sharp dose–response of
the downstream promoter (5) and coupled with slow promoter
dynamics (14, 34). In addition, basal expression lowers the noise
(5) as the promoter approaches the fully repressed state at
ATc � 0. The model also suggests that ATc binds and inactivates
free intracellular TetR molecules before interacting with DNA-
bound TetR and relieving repression. This gives rise to the sharp
increase in dose–response near the lowest ATc concentration
that completely depletes free intracellular TetR (Fig. 2 A).

Transcriptional Cascade with Negative Autoregulation (Linearizer).
The computational model allowed us to predict the effect of
incorporating feedback into the regulatory part of the cascade.
Keeping the reaction rates unchanged, we incorporated regula-

tor self-repression into our model (section 5 in SI Appendix), such
that the reporter and the repressor were transcribed from
identical promoters. Based on published experimental data (32),
the only rate change compared with the no-feedback cascade was
a 30% decrease in regulator transcription rate at full induction.
Stochastic simulations of this modified system predicted a dose–
response curve that was linear up to 90% saturation and lower
noise levels at all inducer concentrations (Fig. 2 A–C).

To verify these computational predictions experimentally, we
constructed the linearizer NF cascade by replacing the upstream
PGAL1 promoter with the PGAL1-D12 promoter, thereby introduc-
ing negative autoregulation into the cascade (Fig. 1B). Measur-
ing yEGFP expression, we indeed observed a linear dose–
response (R2 � 0.99, L1-norm � 6.5 � 10�2, see section 6 in SI
Appendix and Figs. S6, S7 for the definition of these measures
and comparison with the NR strain) over a wide range of ATc
concentrations, from no induction (0 ng/mL) up to 90% satu-
ration (�60 ng/mL), confirming our computational predictions
(Fig. 2 A). Flow cytometry over additional low ATc concentra-
tions (starting at 0.1 ng/mL) ruled out nonlinearity in the
beginning of the dose–response curve and the possibility that
linearity could arise from the leftward shift of a Hill curve (Fig.
2B and section 6 in SI Appendix and Fig. S8). Furthermore, as
predicted computationally, the distribution of yEGFP expression
in the NF strain was unimodal and narrow, maintaining a low
level of noise throughout all inducer concentrations (Fig. 2 C and
E). Compared with earlier findings of noise reduction by NF
(20), the effect here is much more pronounced (up to 7-fold at
intermediate inducer concentrations).

To verify that reporter gene expression acts as a readout
(mimics the dose–response of the upstream regulator, TetR), we
also built a single-gene NF system, placing the tetR::yEGFP
fusion construct under the control of PGAL1-D12 promoter. As
expected, the dose–response of the single-gene autoregulatory
circuit was also linear, and its noise level was comparable with
the NF cascade after rescaling (section 2 in SI Appendix).

Simple Mathematical Model Explains Linearization and Noise Reduc-
tion. After reducing the number of biochemical reactions used
for stochastic simulations and assuming mass action kinetics
(section 5.3 in SI Appendix), we arrived at a set of differential
equations that can be used to mathematically explain dose–
response linearization in the cascade with NF:

dx
dt

� aFx�x� � bxy � dx

dy
dt

� C � bxy � fy [1]

dz
dt

� aFz�x� � dz

where the variables x, y, and z correspond to free intracellular
repressor, inducer, and reporter concentration, respectively, and
C is a control parameter proportional to extracellular inducer
concentration. Other parameters are a (protein synthesis rate),
b (inducer–repressor association rate), d (rate of dilution due to
cell growth), and f (combined rate of inducer dilution, outflux,
and degradation). Inducer dissociation from the repressor oc-
curs at much slower time scale than the other processes we
considered (35), and thus, for the sake of mathematical tracta-
bility, it was not included in this model. The functions Fx and Fz

describe the repressor dependence of protein synthesis from the
upstream and downstream promoters, respectively. Because
repression by TetR is generally cooperative (5), we used the

B

C

PGAL1-D12 yEGFP PGAL1      tetR 

ATc 

PGAL1-D12 yEGFP      tetR 

ATc 

PGAL1-D12

A

Fig. 1. Diagram of the gene constructs and the corresponding simplified
model scheme. (A) NR cascade, consisting of the yEGFP reporter and the
constitutively expressed tetR repressor. (B) Cascade with NF, consisting of the
yEGFP reporter and the tetR repressor that also regulates its own expression.
(C) Simplified model of dose–response in the constructs from A and B. ATc (y)
enters the cell at an influx determined by external ATc concentration (C), and
leaves through outflux and binding to free TetR molecules (x). Free TetR is
eliminated by binding to ATc and spontaneous degradation/dilution. TetR
affects its own and yEGFP (z) production via a repressory Hill function. yEGFP
is eliminated through spontaneous degradation/dilution.
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same Hill function to describe the repressor dependence of the
2 identical promoters in the NF strain:

Fx�x� � Fz�x� �
�n

�n � xn [2]

where � is the induction threshold and n is the Hill coefficient.
The set of Eqs. 1 also describes the cascade without feedback
(NR) after setting Fx � 1.

The steady-state solution of Eqs. 1 includes a quasi-linear
function z(C), confirming that NF linearizes the dose–response
(Fig. 2 A). This can be understood by considering that below
saturation, association with free repressor is the dominant source
of decay for both inducer and free repressor, implying that the
terms dx and fy are negligible compared with bxy. Therefore,
setting dx � fy � 0 in the first 2 equations for the NF strain at
steady state results in

x � Fx
�1�C

a�. [3]

Here, Fx
�1 is the inverse function of Fx, indicating that x (free

repressor concentration) is a predistorted function of C. At the
reporter level we obtain

z �
a
d

Fz�x� �
a
d

Fz�Fx
�1�C

a�� �
C
d

[4]

demonstrating that the reporter’s promoter redistorts the func-
tion x(C), resulting in the linear dependence z � C/d. Therefore,
provided Fz and Fx are related via a linear transformation

Fz�x�C�� � sFx�x�C � ��� � l [5]

the dose–response will be well approximated by the linear
function z � (sC � s� � l)/d, where the factors s, l, and � stretch
and move Fx vertically or horizontally (the values s � 1, l � 0,

and � � 0 correspond to identical up- and downstream promot-
ers, Fx ' Fz).

In summary, linearization in the NF cascade requires that the
predistortion at the regulator level be redistorted at the reporter
level. Therefore, this simple argument predicts a linear dose–
response if the repressor dependences Fx and Fz of upstream and
downstream promoter activities are related via a linear trans-
formation (section 5.3 in SI Appendix).

Linearization of Dose–Response Does Not Depend on the Number of
Repressor Sites. To confirm linearization via pre- and redistor-
tion, we constructed 3 additional linearizers (section 4.2 in SI
Appendix and Figs. S1, S3), using identical up- and downstream
promoters with 1 (PGAL1-S1), 2 (PGAL1-D12), or 3 (PGAL1-T123)
tetO2 sites (32). Importantly, the open-loop (NR) dose-response
of the PGAL1-S1 promoter was twice as steep as that of the other
two promoters, while the peak noise level increased with the
number of tetO2 sites in these promoters (32). We combined
these promoters in pairs to govern the expression of a
tetR::mCherry fusion as repressor and yEGFP::zeoR as reporter.
As expected, the ATc dependence of gene expression noise and
mean in the strain harboring 2 PGAL1-D12 promoters was almost
identical to that of the original linearizer after rescaling (sections
3.3 and 4.2 in SI Appendix and Fig. S2). More importantly, in
accordance with the mathematical prediction that NF linearizes
the dose–response if the repressor-dependencies Fz and Fx of up-
and downstream promoters are linear transformations of each
other, we found that all 3 promoter pairs produced linear
dose–responses (R2 � 0.99, L1-norms � 2.1 � 10�2, 5.7 � 10�2,
and 3 � 10�2, respectively) of nearly identical slopes over a wide
range of inducer concentrations, independent of promoter
strength, and regardless of the number of tetO2 sites present in
the promoters.

As a control, we have also replaced the PGAL1-D12 promoter in
the original linearizer with different downstream promoters
[PGAL1-S1 and PGAL1-T123 (section 4.3 in SI Appendix)]. Compar-
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Fig. 2. Linearization and noise reduction due to NF. (A) Experimental and simulated dose–response curves for the constructs in Fig. 1. For theoretical curves,
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(B) Experimental, background-corrected dose–response for the NF cascade and the corresponding linear fit plotted on log–log scale, showing that linearity holds
from very small to saturating ATc concentrations (0.1–60 ng/mL). Error bars corresponding to standard deviations (from 3 replicates) are smaller than the symbols.
(C) Experimentally measured and simulated gene expression noise for the NR and NF gene circuits. (D and E) Experimental fluorescence histograms for the NR
(D) and the NF (E) strains at increasing ATc concentrations (0–500 ng/mL).
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ing the dose–response of these downstream promoters to that of
PGAL1-D12 in cascades with no feedback (32) we concluded that
the repressor dependence of PGAL1-S1 is markedly different,
whereas that of PGAL1-T123 is quasi-identical to PGAL1-D12 after
linear rescaling (Fig. 3A). In accordance with the mathematical
prediction, we found by flow cytometry that, compared with the
construct with 2 identical PGAL1-D12 promoters, the promoter
combination PGAL1-D12–PGAL1-T123 had steeper but still linear
dose–response (R2 � 0.99, L1-norm � 7.9 � 10�2), whereas the
dose–response of the PGAL1-D12–PGAL1-S1 cascade deviated from
linearity (R2 � 0.93, L1-norm � 14.7 � 10�2) (Fig. 3C and
section 6.2 in SI Appendix). This departure from linearity for the
latter construct confirms that a NF cascade is a linearizer if the
repressor dependencies of upstream and downstream promoters
are related via a linear transformation as in Eq. 5.

Finally, we also observed efficient noise reduction for all
promoter combinations with NF (sections 4.2 and 4.3 in SI
Appendix), suggesting that noise suppression and dose–response
linearization are independent properties of our constructs. Over-
all, these experimental findings confirmed the predictions of the
mathematical model, suggesting that linearization in our con-
structs results from predistortion at the regulator followed by
redistortion at the reporter level (Fig. 3).

Discussion
Using a chromosomally integrated gene expression system, we
studied the effect of NF on the characteristics of eukaryotic gene
expression over a broad range of induction. This is important,
because of the ‘‘fundamentally different logic of gene regula-
tion’’ (36) and the different sources and characteristics of gene
expression noise in eukaryotes versus prokaryotes (9). Indeed,
we observed a massive (7-fold) reduction of noise compared with
prokaryotic systems (20) at intermediate induction. Noise re-
duction at intermediate and high ATc levels might be explained
by differences in regulator (free TetR) fluctuations in the 2
different strains (section 5.2.9 in SI Appendix).

Importantly, we have also demonstrated that introducing
negative autoregulation into a transcriptional cascade can lin-
earize the dose–response before saturation. Currently, no known
alternatives exist to linearize the dose–response in eukaryotic
gene expression systems. For example, reducing the number of
repressor binding sites can result in steeper dose–response,
depending on the location of the operator sites (32). Moreover,
even when the desired reduction of steepness is obtained, it is
accompanied by a drastic increase in basal expression (32).
Although to the best of our knowledge, a systematic study of
linearization by a gene circuit has not previously been under-
taken, similar effects have been widely known and applied in

electronics, control theory, and even neuroscience. For example,
NF increases the linearity (reduces distortion) in electronic
amplifiers, and may play a role in the ‘‘spike-frequency adapta-
tion’’ of neurons (37), converting nonlinear instantaneous firing
rate responses to linear at steady state (38).

A set of gene circuits similar to ours have recently been studied
in Escherichia coli (26), and NF was shown to reduce noise at a
wide range of inducer concentrations. However, noise had a
U-shaped dependence on inducer concentration in the bacterial
construct corresponding to our NF cascade, and there was no
noise peak in the bacterial construct corresponding to our NR
cascade. The U-shaped inducer dependence of noise was ex-
plained by plasmid copy number variation acting as a source of
extrinsic noise (7), which is suppressed most efficiently at
intermediate inducer concentrations by NF (39). On the other
hand, gene copy number variation did not play a role in our
single-copy, chromosomally integrated constructs, eliminating
this source of extrinsic noise. The presence of a noise peak
observed for the NR cascade, and other similar constructs (9, 32,
40), is explained by bimodal yEGFP distributions occurring only
at intermediate inducer concentrations, whereas the reporter
expression in the corresponding bacterial system was already
bimodal even without induction (26). This could be a result of
higher tetR expression in our constructs, which could increase the
steepness of the dose–response curve and shift the induction
threshold higher in the absence of feedback. Thus, the specifics
of the bacterial and yeast system can account for the different
inducer dependence of the gene expression noise and mean in
these studies.

The architecture of the linearizer gene circuit closely resem-
bles inducible bacterial operons with repressor control (41) with
the exception that bacterial effectors frequently catalyze bio-
chemical reactions or encode transport proteins that affect
inducer levels creating additional feedbacks (42). Thus, natural
gene circuits with completely identical architecture and linear
dose–response might not exist at all. However, the ability of
linearizers to convert sigmoidal dose–responses to linear and to
eliminate bimodality could have wide-ranging applications for
building reliable synthetic transcriptional networks. Based on
our results, introducing NF will improve the performance of
current gene expression systems by reducing cellular heteroge-
neity, and by allowing the experimenter to fine-tune the expres-
sion of any gene along a linear dose–response curve. This seems
particularly important considering the nonlinear dose–response
of many artificial transcription activation elements (33), and the
wide use of tet gene expression systems in bacteria (20, 26, 40),
yeast (5, 14, 32), insects (43), and mammalian cells (31). In
summary, the precise control of gene expression mean accom-
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panied by noise reduction are attractive features that should
make the linearizer gene circuit a highly useful tool in synthetic
biology.

Materials and Methods
Strains and Media. The haploid S. cerevisiae strain YPH500 (�, ura3-52, lys2-
801, ade2-101, trp1�63, his3�200, leu2�1) (Stratagene) was used as a parental
strain. First, the reporter part of the cascade was integrated into the native
GAL1-GAL10 locus, followed by the integration of regulatory parts into the
ampR gene of the first integrant. Modified lithium acetate procedure was
used for transformation (44). The number of integrations for each construct
was verified by PCR and flow cytometry, selecting only the strains with single
integrations. Cultures were grown in synthetic drop-out medium with the
appropriate supplements to maintain selection (all reagents from Sigma) and
supplemented with sugars as described below.

Construction of Cascades. The yeast integrative plasmid pRS4D1 (9, 14) carrying
a PGAL1-D12 promoter (pGAL1* in refs. 9 and 14, and D12 in ref. 32) with 2 tetO2

sites and selectable TRP1 marker was used as the template for all subsequent
plasmids in this work. The tetracycline repressor gene (tetR) present in the
original pRS4D1 plasmid under the control of GAL10 promoter was replaced
with nonfunctional fragment inserted between SacI and SpeI sites. The ge-
netic constructs were then generated in 2 steps. First, in the reporter part, the
region of plasmid containing transcriptional terminators flanking PGAL1-D12

promoter and downstream yEGFP gene were amplified by PCR and inserted
into the pRS403 shuttle vector (Stratagene) between 2 PvuII sites, producing
pDN-G1Gh plasmid with HIS3 selectable marker. Second, in the regulator parts,
the functional tetR gene was amplified by PCR and placed between BamHI and
XhoI sites under the control of either PGAL1-D12 (NF) or PGAL1 (NR) promoters,
producing the pDN-G1Tt and pDN-NG1Tt plasmids, respectively. The pDN-NG1Tt
was engineered, replacing the PGAL1-D12 with the native PGAL1 promoter restoring
the original sequence between AgeI and BamHI sites, by using the pESC-Leu
(Stratagene)asatemplate.All cloningprocedureswereperformedinE.coliXL-10
Gold strain (Stratagene) by using selection by ampicillin (Sigma). All constructs
were sequenced in the insert regions with double coverage. Oligonucleotides
used in the study can be found in SI Appendix.

Flow Cytometry. Single cell colonies were picked from the plate and incubated
overnight in synthetic drop-out medium supplemented with glucose 2% at

30 °C. Cell suspension was diluted 1:6, and 100 �L was used to inoculate
synthetic drop-out medium supplemented with 2% galactose and increasing
concentrations of ATc (0 to 500 ng/mL; ACROS Organics). Cultures were then
grown at 30 °C for another 16 h and read on the FACScan flow cytometer
(Becton Dickinson) or MoFlo flow cytometer (DAKO North America).

Data Analysis, Computational Models, and Simulations. Flow cytometry data
were analyzed using R (R Development Core Team, Vienna). The original
log-binned fluorescence intensity values were transformed (by raising 10 to
the power of each log bin), and the mean and standard deviation of the
resulting values were calculated for each sample within a small forward and
side scatter gate to reduce variability in cell size and shape (4). Cells with log
fluorescence deviating 	3 standard deviations from the geometric mean were
considered outliers and were discarded from the analysis. The noise (coeffi-
cient of variation) was computed for each sample as the standard deviation
divided by the mean. Linearity was assessed by using a linear regression and
the L1-norm (see SI Appendix for details).

Computational models were developed based on chemical mass action
kinetics, and the resulting analytical formulas were fitted in Matlab (Math-
Works) to the average of 3 experimental replicates the NR strain by using the
fminsearch (Nelder–Mead) algorithm. Stochastic simulations based on the
Gillespie algorithm were performed in Dizzy (45) and analyzed with Octave
(University of Wisconsin, Madison). The detailed description of the computa-
tional model and the sensitivity of the results to various parameters can be
found in SI Appendix and Table S1.
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