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UNSUPERVISED CLASSIFICATION FOR DESIGNING SPEAKER
IDENTIFICATION SYSTEMS

MARGIT ANTAL AND ANNA SOOS

Abstract. We compare recognition performance of Vector Quantization
method (VQ) and Gaussian Mixture Modeling method (GMM) in normal
speech conditions. We performed measurements to emphasize the relation-
ship between the size of models -number of clusters or number of compo-
nents of mixtures— and size of the system. We also conclude that the VQ
method is a particular case of the GMM method. The results show that
the VQ sometimes overperfoms GMM which has a serious shortcoming,
particularly when a mixture distribution consists of several overlapping
distributions.

1. Introduction

Unsupervised classification is also known as data clustering, which is a generic
label for a variety of procedures designed to find natural groupings, or clusters, in mul-
tidimensional data based on measured or perceived similarities among the number of
clusters, the clusters’ shapes and the clusters’ sizes. In this article we applied unsu-
pervised classification for designing speaker identification systems and we performed
several measurements to show the relationship between number of clusters, used to
represent speakers’ models and identification system’s accuracy.

The goal of a speaker identification system is to automatically determine a
speaker’s identity using an utterance from the speaker. Such a system may be text-
dependent—when the speaker must pronounce a text chosen randomly by the system
from a fixed vocabulary—, or may be text-independent, when an arbitrary text is
allowed to be uttered. Our system was developed for the text-independent case.

Several methods were studied for text-independent speaker identification sys-
tems including Vector Quantization methods (VQ) [1], [2], [3], Gaussian Mixture
Model method (GMM) [4] and Hidden Markov Models [6]. These methods belong to
the model-based approach. For each speaker a statistical model is created to char-
acterize the speaker’s voice. These statistical models do not contain any information
about interspeaker variabilities.

In this article we try to show that the Vector Quantization method and the
Gaussian Mixture method are both based on unsupervised classification, and the VQ
method can be viewed as a particular case of the mixture decomposition method.
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Another observation we make is that for speech data, we use clustering only for
reduction of the amount of data. Our objective is to find a reduced set of prototypes
that best approximate the original set of features and not to find separable clusters
(perhaps no any such cluster exists in speech). So we can conclude that there is
no significant difference between K-means clustering algorithms developed by the
pattern recognition community and the LBG clustering algorithm described in the
speech processing and other communications literature [13].

Clustering can be used not only for separating the data into clusters but also
for organising a large amount of data. There are hundreds of clustering algorithms
in the literature which can be divided in two main categories: square-error iterative
partitional clustering and agglomerative hierarchical clustering. In this article we
used only the first approach, so we will describe only this one. This type of clustering
algorithms attempt to obtain partitions which minimize the within-cluster scatter or
maximize the between-cluster scattering [8].

The partitional clustering algorithm determines a partition of n So for clus-
teringpatterns in a D-dimensional metric space into M (M < n) clusters, such that
the patterns in a cluster are more similar to each other than to patterns in different
clusters. It is a hard problem to determine the optimal clusters’ number (M) even
when the type of data is known. In this article we performed some measurements to
show how the identification system accuracy is influenced by clustering type and the
number of clusters used.

2. VQ-based Speaker Identification

In the VQ-based speaker identification system each speaker is represented by
a codebook created from some training data uttered by the speaker. Each speaker’s
model is created in two steps:

e Consider some training data (utterance) from the speaker and extract
some type of feature vectors (MFCC [13], LPCC [13])

{z1,22,...,2n} z; € RP.

e (Cluster the feature vectors into a fixed number of -clusters
{C1,C,...,Cp}, where M < n. Take the centroid of each cluster
and form a set of M vectors, named also code vectors. This set of code
vectors is called codebook and this is the model of a speaker.

This type of speaker identification system is based on square-error clustering. The
objective is to obtain a partition that, for a fixed number of clusters minimizes the
square-error. The set of n patterns in D dimensions has somehow been partitioned
into M clusters {Cy,Cy,...,Cp} such that cluster C has ny, patterns (feature vec-
tors) and each pattern is in exactly one cluster, so that ch”:l ng = n. The mean
vector, or center of cluster C}, is defined as the centroid of the cluster:

1 &
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k) . ) .
where arg ) is the ith pattern belonging to cluster Cy, [8]. The square-error for cluster
C},, also called within-cluster variation is:

£ () ().

i=1

The square-error for the clustering is defined as:
M
Eiy =) ¢ (3)
i=1

The objective of this clustering is to find a partition that minimizes (3).

The role of vector quantization (clustering) is to reduce the amount of data
and to model the distribution of the feature vectors. The problem of automatically
separating training data into groups representing classes is solved by a clustering
algorithm. A comparison of clustering algorithms in a VQ-based speaker identification
system was made by [5] and the results were that the accuracy of identification of a
system generally is not influenced by the clustering algorithm, but is influenced by
the number of clusters (codebook size) chosen. So for clustering any efficient and fast
algorithm can be used.

The identification procedure can be performed in two ways:

1. comparing the sequence of feature vectors extracted from the unknown
speaker utterance {z1,Zs,...,z7} with all N models (codebooks) in the
speaker database [1].
2. forming a codebook from the sequence of these feature vectors and compar-
ing the resulting codebook with the codebooks from the speaker database
For case 1 the identification procedure can be formulated as follows:
Consider a speaker idenification system with N known speakers. We define
the codebook for the it" speaker as

A = (m§1>, m$, ...,mEM)), i=1,2... N

where m\") is defined by (1).

i

1. Extract the set of features from the unknown speaker utterance.

X:{xlaa:Zv"'vxT}: xiERD

2. For every model )\;, i =1, N compute the distortion
S )
N = ; j
d(X, \i) = T kg_lj:ﬂ.r}wdE(xk,mi ),

where dp is the Euclidean metric defined in RP.
3. Identify the speaker as the one with the smallest distortion:

ld = arg min {d(X, Ai)}
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F1GURE 1. Identification rate vs. number of clusters

For case 2 the identification procedure is almost identical to case 1. The only difference
is in step (1), where after the feature extraction step is made a codebook from features
and this codebook is used in step (2) for calculating the distortions with known speaker
models. In this case the algorithm uses a reduced number of distance calculation but
performs a clustering to obtain the codebook.

In the application used for measurements we used case 2 for the identification.
We trained systems with number of clusters

M €{1,2,4,6,8,10,12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32}

and measured the identification rates achieved by these systems. The results are
represented in figure 1. The parameters of the identification system are presented in
the Section 4.

3. GMM-based Speaker Identification

3.1. Preliminaries. Since the primary speaker-dependent information conveyed by
the spectrum is about vocal tract shapes, we want to use a speaker model that captures
the characteristic vocal tract shapes of a person’s voice as manifested in spectral
features.

6
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In the statistical speaker model a speaker can be treated as a random source
producing the observed feature vectors. The random speaker source is formed by a
set of hidden states corresponding to characteristic vocal tract configurations. When
the random source is in a particular state, it produces spectral feature vectors from
that particular vocal tract configuration. The states are called hidden because we
can observe only the spectral feature vectors produced, not the underlying states
that produced them. FEach state produces spectral feature vectors according to a
multidimensional Gaussian probability density function (pdf) with a state dependent
mean and covariance [4]. The pdf for the state ¢ and feature vector z can be expressed
as )

() = — i) @)
") = G W
where

e 1 is a D-dimensional feature vector, z € RP
® Li; is the state mean vector, u; € RP
e Y, is the state covariance matrix

The mean vector represents the expected spectral feature vector from the state, and
the covariance matrix represents the correlations and variability of spectral features
within the state.

The produced feature vector depends on the parameters of the current state
(ni, X;) and the process governing what state the speaker model occupies at any time
is modeled as a random process. The following discrete pdf associated with the M
states describes the probability of being in any state

M
{pl;pZ;"'apM}; where szzla (5)
=1

and a discrete pdf describes the probability that a transition will occur from one state
to any other state,
aij=P@i—3j), i,j=1,M (6)

The above definition of the statistical speaker model is known as Hidden
Markov Model (HMM) [15]. The HMMs are capable of describing a complex statistical
process.

Because our goal is to build speaker’s models for text independent speaker
recognition we can simplify the statistical speaker model by setting the transition
probabilities a;; equal to 1/M. This means that all state transitions are equally
likely.

In following sections we will call each state a component.

3.2. The Gaussian Mixture Speaker Model. A Gaussian mixture density of a
feature vector z, x € RP, given the parameter vector \ is a weighted sum of M
component densities, and is given by the equality:

M
p(z|A) = Zpi ~bi(x) (7)
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where
e 1 is a D-dimensional feature vector
e bi(x) i =1, M are the component densities
e p; i =1, M are the mixture weights.

Each component density is a D-variate Gaussian function defined by the equation (4)
with mean vector p; and covariance matrix ¥; and the mixture weights satisfy the

constraint
n
> opi=1
i=1

The complete Gaussian mixture density is parameterized by the mean vectors,
covariance matrices and mixture weights from all component densities.
These parameters are collectively represented by the symbol:

A= (pzalulazl)a ’LZI,M

There are two principal advantages for applying Gaussian mixture densities
as a representation of speaker identity. The first is the intuitive notion that the
individual component densities of a multi-model density may model some underlying
set of acoustic classes. These acoustic classes reflect some general speaker-dependent
vocal tract configurations that are useful for characterizing speaker identity. The
second advantage of using Gaussian mixture densities for speaker identification is the
empirical observation that a linear combination of Gaussian basis functions is capable
of representing a large class of sample distributions. One of the powerful attributes
of GMM is its ability to form smooth approximations to arbitrarily-shaped densities.

3.3. Applying the model. With the GMM as the speaker representation we can
then apply this model to speaker identification. The identification system is a maxi-
mum likelihood classifier. For a reference group of N speaker models {\;, A2, ..., AN},
the objective is to find the speaker identity § whose mode has the maximum posterior
probability for the input feature vector sequence

X = {xlyva"'vxT}
The minimum-error Bayes’ rule for this problem is

s _ _ P(X]As)
§ = arg 1rgrta§xN P(X\s|X) = arg 1§msaéXN o0 P(Xs) (8)
Assuming equal probabilities of speakers, the P(\;) and p(X) are constant
for all speakers and can be ignored. Equation (8) becomes

§=a a XA
§=arg max p(X|As)
Assuming independence between observations the decision rule for the

speaker identity becomes

T
$=arg max, tl:llp(aftlks) 9)
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where
e T is the number of feature vectors
o p(x¢|As) is given in equation (7)
Because the logarithm is monotonically increasing, (9) becomes

T
§=arg max ;10gp($t|)‘s)

3.4. Estimating GMM parameters. Given a training speech from a speaker, the

goal of speaker model training is to estimate the parameter vector A for GMM. We

will use Maximum Likelihood (ML) estimation technique. The aim of ML estimation

is to find the model parameters which maximize the likelihood of the training data.
For a sequence of T training feature vectors

X ={z1,2a,...,27}
the GMM likelihood can be written as than model with fewert

T
(X)) = [ o)

The ML parameters can be estimated by using a specialized version of the
expectation-maximization (EM) algorithm. The basic idea of the EM algorithm is
beginning with an initial model A, to estimate a new model ), such that p(X|\) >
p(X|A). The new model then becomes the initial model for the next iteration.

On each EM iteration the following estimates are calculated:

Mixture weights::

1 T
t=1
Means:: r
2 Plilze, A) -
T T T .
> i1 P(iTe, A)

Covariances::
T )
T = Zt:l p(z|a:t, /\) . xtxtT 7 - T
i — T ; it
> i1 Plilze, A)
If we are using diagonal covariance matrices, we need to update only the

diagonal elements in the covariance matrices. For an arbitrary diagonal element o7
of the covariance matrix of the i** mixture, the variance estimates become:

T .

G2 = Zt:1 p("|$ta)‘)$% 2

i = T ] i
> i1 P(ilze, A)

The aposteriori probability for component i is given by

, Di - bi(xy)
plilze, ) = 57—
Eéw:l D - br(z¢)
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FIGURE 2. Identification rate vs. mixture numbers

Each of the equations involves p(i|z;, A),which can be interpreted as “fuzzy
membership” of z; to Gaussian i.

Initialization of the GMM models

First, the order M of the model must be large enough to represent the feature
distributions. Second, the type of the covariance matrices for the mixture distribu-
tions needs to be selected. Diagonal covariance matrices simplify the implementation
and are computationally more feasible than models with full covariances. The EM
algorithm guarantees to find a local mazimum likelihood model regardless of the ini-
tialization, but different initialization can lead to different local maxima. Usually the
means are initialized with centroids of clusters obtained with k-means algorithm and
for covariance matrices can be used as initial value the identity matrices.

3.5. Experimental results. In the first experiment we tested how the mixtures’
components number (model order) influence the identification accuracy. The results
are given in figure 2.

In the second experiment we tested if there exists a relationship between the
identification system size —speakers known by the system— and the mixture compo-
nents. We measured the identification rate for systems with mixture’s components
1, 2 and 4, increasing the system size (number of speakers) from 1 to 66. As the

10
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Identification rates vs. system size for different number of mixtures
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FiGURE 3. Identification rates vs. system size obtained for systems
with mixture components 1, 2 and 4

number of speakers increases the model with more mixture components achieves a
better performance than the model with fewer components.it was made a The results
are shown in figure 3.

4. Conclusions

All experiments were done with speech collected from 66 speakers, 29 Hungar-
ian native speakers and 37 Romanian native speakers. 45 of 66 were female speakers
and 11 were male speakers. The ages of speakers vary from 14 to 60. The speech was
recorded with at least four types of microphones on anonymous soundcards without
laboratory conditions. The sampling rate was 16 kHz with 16 bits/sample. Before fea-
ture extraction stage a preprocessing was made with direct component (DC) removal
and a high emphasis filtering with

H(z)=1-095.27"

and finally, performed a short-term mel-cepstrum analysis with 30 ms Hamming win-
dow, with 10 ms shift. The number of mel-cepstral coefficients was 12. For training
purposes we used 30s speech and for identification a new set of 1s speech collected
from each speaker.

11
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In the stage of estimating the GMM models we initialized the parameters of
the model with the following values:

® D = La
® L We]rvé obtained with the clustering algorithm used in the VQ model too
e for ¥; we used diagonal covariance matrix initialized with the identity
matrix, i = 1, M.
Our goal was to compare the VQ method with the GMM method so we used the
same features obtained from the same speech database and the same clustering for
both methods. Our expectation was that the GMM method will overperform the VQ

method, but this is not the case for all values of M. The following figure shows the
results obtained for the two systems.

Comparison of VQ and GMM methods
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The GMM models’ construction is more computer-time consuming and may
have a serious shortcoming, particularly when a mixture distribution consists of sev-
eral overlapping distributions [11].
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