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Zoltán Nédaa,�, Răzvan Florianb, Mária Ravasza, András Libálc, Géza Györgyid
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Abstract

An optimal clusterization model resembling the infinite-range Potts glass-type model with �J bonds and unrestricted

number of states, p ¼ N is introduced and studied. As a function of the q probability of þJ bonds, it is found that the r

relative size of the largest cluster, or, coalition, shows a percolation-like transition at q ¼ 1
2
. By a simple renormalization

approach and several optimization methods we investigate the rðqÞ curves for finite system sizes. Non-trivial consequences

for social percolation problems are discussed.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Potts glass was originally introduced for studying various non-magnetic random orientational [1] and
structural [2] glasses, which do not possess reflection or rotational symmetries. Apart of the specific solid-state
and statistical physics applications, the infinite-range (or mean-field) version of the model recently received
renewed interest from the view-point of coalition formation phenomenon in sociological systems [3–5]. From
this perspective the primary interest is in the ground-state of the infinite-range (or mean-field) p-state Potts
glass.

The infinite-range p-state Potts glass is usually defined by the

H ¼ �p
X
ioj

JijdsðiÞsðjÞ (1)

Hamiltonian, where the sðiÞ Potts states can take the 0; 1; 2; . . . ; p� 1 values. The sum is extended over all
NðN � 1Þ=2 pairs, dmn ¼ 1 if m ¼ n and dmn ¼ 0 otherwise. The Jij bonds are randomly distributed quenched
variables with J0=N mean, and the variance is presumed to scale as N�1. The system is non-trivially frustrated
and computing the thermodynamic parameters is a complex task. The above model has been extensively
e front matter r 2005 Elsevier B.V. All rights reserved.
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studied by many authors through different methods [6–14]. Within the replica theory a self-consistent
description of the low-temperature glassy phase was obtained [8,10]. For p42 and low enough temperatures it
was found [6,11] that the infinite-range Potts glass is finally always ferromagnetic.

Here we consider a model resembling the infinite-range Potts glass, which can be useful in considering
optimal clusterization problems or in understanding coalition formation phenomena in sociological systems.
A difference to the Potts glass is that now the variance of the Jij bonds scales as N�2. Also, we consider
unrestricted number of Potts states (p ¼ N), and limit the study on the ground-state (T ¼ 0). The main
difference between the original Potts glass and the model studied here is in the degeneracy of configurations.
Indeed, a given map of coalitions (clusters) corresponds to many Potts configurations. In our model, in the
N !1 limit an interesting percolation-like transition is then revealed, which is investigated for finite system
sizes by different approximations.

We have to emphasize here that the term ‘‘Coalition’’, frequently used throughout this work should be
handled with care. Its more complex classical meaning in politics should not confuse us. In our interpretation
a coalition will simply denote a cluster of agents that are all characterized with the same Potts state.
2. The model

In order to describe the process of aggregation, coalition-formation or some optimal clusterization
problems in politics, economics or sociological systems we introduce a model similar to the original Potts glass
model. In such a system given a set of N actors (analogous to the Potts spins) we define an associated
distribution of bilateral propensities towards either cooperation or conflict [3]. The actors might be countries
which ally into international coalitions, companies that adopt common standards and strategies, parties that
make alliances, individuals which form different interest groups, and so on. The propensities will define the Zij

interactions between the actors. The Zij bond is positive if there is a tendency towards cooperation and
negative if there is a conflicting relation between actor i and j. For simplicity reasons let us assume first that the
Zij links are symmetric (Zij ¼ Zji), however, later the case without this assumption is also considered. In
addition to this, each actor has an Si40 weight-factor which characterizes its importance or size in the society.
This may be a demographic, economic or military factor, or an aggregate parameter. The question then arises
as what kind of coalitions are formed in order to optimally satisfy the conflicting interactions. This coalition
structure (Potts variables assignment) is denoted as the optimal coalition state. In particular, we are interested
in the size of the largest coalition in the optimal state.

This non-trivial optimization problem can be mathematically formulated resembling a zero-temperature
Potts glass type model. To prove this, we define a cost-function, K, (a kind of energy of the system) that is
increasing with SiSjjZijj whenever two conflicting actors (i and j) are in the same coalition or two actors which
have a tendency towards collaboration are in different coalition. The cost-function is zero, when no propensity
is in conflict with the formed coalitions. The number of possible coalitions is unrestricted (maximal possible
number is N), and we denote the coalition in which actor i is by sðiÞ. The cost function then writes as

K ¼ �
X
ioj

dsðiÞsðjÞZijSiSj þ
1

2

X
ioj

ðZijSiSj þ jZijSiSjjÞ . (2)

One immediately realizes that for a given distribution of the Zij interactions and Si weight-factors the second
term in Eq. (2) is constant (independent of the formed coalitions).

While the function (2) has energy levels equivalent to (1) with p ¼ N and corresponding Jij’s, the degeneracy
of the levels makes the models different. The total number of states in the p ¼ N Potts model is obviously
CPottsðNÞ ¼ NN . Hence the high temperature entropy lnCPottsðNÞ grows faster than linearly in N, that is, the
p ¼ N Potts model is super-extensive. Therefore, the number of configurations for the coalition formation
model CðNÞ is bounded from above by NN , because a given coalition structure corresponds to many a Potts
configurations, as explained in A.4. This, however, still leaves the question of extensivity open, so we took a
closer look on the number of configurations, see Appendix A. Numerical evaluation, by the method in A.2, of
lnCðNÞ up to N ¼ 1000 shows that it, too, grows faster than a linear function of N. Hence the high
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temperature entropy is super-extensive, so we have reasons to believe that traditional methods of statistical
mechanics break down.

Returning to our K cost function (2), for SiSjZij we now introduce the JijN notation. If Zij and Si are
independent of N we have that hJiji scales as N�1, and we introduce the notation: J0 ¼ NhJiji. We consider
now the practically important case, when the variance of Jij scales as N�2. (An immediate example for this
scaling is the simple case when Si ¼ Sj ¼ 1 and Zij is þ1 with a probability q and �1 with a probability 1� q.)
For this choice of disorder, in the finite-p Potts model, the disorder becomes irrelevant in the N !1

thermodynamic limit [6,7] for any finite temperatures.
Let us recall that for finite p and a variance of Jij proportional to N�1 the Potts glass becomes a ferromagnet

for low temperatures [6]. Blind substitution of p ¼ N and a variance of Jij proportional to N�2 into the replica
free energy of Ref. [6] results for low temperatures again in a ferromagnetic state, since the large p

compensates for the smallness of the variance. However, because of the breakdown of extensivity this
conclusion should be handled with care. As we shall see below, the coalition formation model does not behave
that way.

What we find rather resembles the p ¼ 2 case of the Potts-glass [6,7], i.e., the Sherrington–Kirkpatrick
model, in that the disorder with variance proportional to N�2 turns out irrelevant even for T ! 0. Advancing
the results discussed later in the paper, while for J040 the system has minimal cost function when all elements
are in the same coalition, for J0o0 in the ground-state each element is in a different coalition. As a function of
J0 a transition is obtained. This transition resembles the one in percolation or random graph models. Since the
temperature has no role in this phenomenon, we call it geometrical phase transition.

In the present paper we study this geometrical phase transition for finite N values and simple Jij

distributions. The finite N case is, however, not as simple as the thermodynamic limit. Frustration effects are
important and finding the ground-state is a complex NP hard optimization problem. (It is believed that for
large N the number of steps necessary for an algorithm to find an exact optimum must, in general, grow faster
than any polynomial in N.) Several methods were used to investigate finite-size behavior in the expected
transition. First, a simple renormalization approach was considered. For small systems (up to N ¼ 10) an
exact enumeration was then used. For larger systems (up to N ¼ 60) Monte Carlo type simulated annealing
and the recently proposed extremal optimization was applied.

The order parameter considered by us is the r relative size of the largest cluster. In the thermodynamic limit
r has the right behavior, for J0o0 we get r ¼ 0, and for J040 we obtain r ¼ 1. More precisely, r is computed
as

rðJ0Þ ¼ maxðiÞ
Cxði; J0Þ

N

� �* +
x

, (3)

where Cxði; J0Þ stands for the number of elements in state i for an x realization of the Jij distribution, when
hJiji ¼ J0=N. Since the ground-state might be degenerated (i.e., many possible configurations with the same
minimal energy might exist) we make an average over all these states (denoted in (3) by the over-line). h. . . ix
refers then to an ensemble average over Jij .

We focus now on the simplest model in which we expect this transition, i.e., when Jij is a two-valued
quenched random variable, Jij ¼ 1=N with probability q and �1=N with probability 1� q (i.e., when Si ¼

Sj ¼ 1 and Zij is þ1 with a probability q and �1 with a probability 1� q). The distribution function of the Jij

values writes as

PðJijÞ ¼ qdðJij � 1=NÞ þ ð1� qÞdðJij þ 1=NÞ , (4)

where dðxÞ denotes the Dirac functional. We assumed here that the Jij links are symmetric (Jij ¼ Jji). It is
immediately realized that for this distribution

hJiji ¼ ð2q� 1Þ=N; ðDJijÞ
2
¼

4qð1� qÞ

N2
. (5)

In the view of our previous arguments we expect that in the N !1 limit the rðqÞ curves will indicate a
geometrical phase-transition at q ¼ 1

2
.
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3. Renormalization approach

Our elementary renormalization approach estimates in a mean-field manner the new relative size of the
largest state, whenever the system size is doubled. We start from a system composed by only two elements
(step 1). In the ground-state, the probability to have these two elements in the same Potts state is q1 ¼ q. The
relative size of the largest cluster is then r1 ¼ q1 þ ð1� q1Þ=2, since the largest cluster will be the total system
with probability q1, and the original half with probability 1� q1. In step 2 we now double the system size by
linking through all possible Jij connections two previous configurations (A and B) with maximal relative size
r1, each of them having two elements. Then, we reduce the four Jij connections between the elements of A and
B to a single one, and transform the system into a configuration similar to the one from step 1. This procedure
is summarized in Fig. 1.

The new link will be positive (þ1) with probability q2 ¼ q4
1 þ 4q3

1ð1� q1Þ þ 3q2
1ð1� q1Þ

2, and the new
relative size of the largest state is r2 ¼ q2 þ ð1� q2Þr1=2. The factor 3 from the last term in the expression of q2

results by considering the new link positive with 1
2
probability, whenever there are two positive and two

negative links (six possible realizations in total). This doubling procedure is then recursively repeated, leading
to the simple renormalization equations

qkþ1 ¼ q4
k þ 4q3

kð1� qkÞ þ 3q2
kð1� qkÞ

2 , ð6Þ

rkþ1 ¼ qkþ1 þ ð1� qkþ1Þ
rk

2
. ð7Þ

The size of the system after k steps is N ¼ 2k.
On the ½0; 1� interval, iteration (6) has two stable fix-points: 0 and 1. There is also an unstable fix-point q ¼ 1

2
.

Starting the iteration from q 2 ½0; 1
2
Þ we get limk!1 qk ¼ 0 and limk!1 rk ¼ 0. Choosing q 2 ð1

2
; 1� we get

limk!1 qk ¼ 1 and limk!1 rk ¼ 1. These results suggests that in an infinite system we have two distinct phases
separated by q0 ¼

1
2
, as expected. In phase I the r order parameter converges to 0, and in phase II r converges

to 1. We get thus the expected percolation-like transition as a function of q.
Using Eqs. (6)–(7) we can also easily plot the rðqÞ curves for different system sizes. Results in this sense are

presented in Fig. 2. These results support our previous arguments.
4. Exact enumeration

For small system sizes (Np10) exact enumeration is possible. This means that one can computationally
map the whole phase-space (all sðiÞ realizations) for a generated Jij configuration and determine the minimum
energy states. Moreover, for Np7 it was also possible to map all Jij configurations as well. Our results up to
N ¼ 7 are thus exact. In the 7oNp10 interval, although the minimum energy states are exactly found, due to
Fig. 1. Schematics of the renormalization approach.
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greatly increased computational time and memory needed, it was possible to generate only a reasonable
ensemble average for Jij (5000 configurations). Results are plotted in Fig. 3.

We performed this exact enumeration with two purposes. First, we checked the trends of the rðqÞ curves as a
function of increasing system size. Secondly, these results offer a good ‘‘standard’’ for our less rigorous Monte
Carlo type optimization methods, used for larger system sizes. As the results in Fig. 3 shows the rðqÞ curves
have a similar trend as those suggested by our renormalization approach, i.e., as the system size increases we
find increasing slopes for rðqÞ around a non-trivial q value.

By exact enumeration we have also studied the degeneration of the ground state. For a given Jij bond-
configuration, many different coalition structure can have the same ground-state energy. We can define thus a
w degeneration level for each ground-state, and for a fixed q value we can calculate the hwi ensemble average
over all bond configurations. Different ground-states might be characterized by different r values, as well. For
a given bond configuration the difference between the maximal r value (rmax) and the minimal one (rmin) will
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Fig. 4. Average degeneration level of the ground-state: (a) and difference between the maximal and minimal r value for different coalition

structures in the ground state (b), both as a function of the q probability of þ interactions between the elements.
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characterize the maximal possible deviation in the order parameter. An ensemble average over this quantity
(hrmax � rmini) will give information about the maximal possible changes in the r order parameter, if another
equally optimal coalition structure is chosen. The values of hwi and hrmax � rmini were calculated as a function
of the q parameter. The obtained results are presented in Fig. 4. It is interesting to note that the average
degeneration of the ground-state is peaking always below the q0 ¼

1
2
percolation threshold (Fig. 4a). The value

of hwi is increasing with the system size, and the maxima is obtained for smaller and smaller q values. The
value of hrmax � rmini shows a different trend, having a converging tendency with increasing system size and
usually the maximal values are obtained for q4q0 values.

5. Monte Carlo type optimization

Monte Carlo type optimizations were used for computing the ground-state of larger systems. We considered
both the classical simulated annealing [15] and the recently proposed extremal optimization method [16]. Both
approaches are rather time-consuming and the necessary computational time increases sharply with system
size. Our computational resources allowed us to study systems with sizes up to N ¼ 60.

Simulated annealing has been implemented in the standard fashion [15]. For the extremal optimization
method we generalized the originally proposed method [16] by considering a two-step algorithm. In the first
step we performed the usual optimization after the energies of the elements. As suggested in Ref. [16] we
assigned a given fitness to each Potts element and ranked all the variables according to their fitness.
Considering the PðkÞ�k�t probability distribution over the rank, k, we then select an element for which the
state will be changed. For this first step we found the optimal value of t ¼ 0:25. In the second step we decide
the new state of the chosen element by a similar procedure. For this second step the optimal value of t proved
to be 4.

Simulated annealing and extremal optimization gave identical and practically indistinguishable results.
Therefore, in Fig. 5 we plot only the simulated annealing results. The shape of the

DrðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2ðqÞix � hrðqÞi

2
x

q
(8)

standard deviation was also computed (Fig. 4b), suggesting a non-trivial peak. In Fig. 5 the curves for N ¼ 10,
20, 30 and 40 were obtained with an ensemble average of 5000 realizations, and the results for N ¼ 60 with a
statistics of 1000 realizations. For N ¼ 10 the Monte Carlo type results are in perfect agreement with the ones
from exact enumerations (Fig. 5a), giving confidence in the used stochastic simulation methods.
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Fig. 5. Monte Carlo optimization results: (a) dependence of the order parameter and (b) standard deviation of the order parameter, both

as a function of q. For comparison purposes on (a) the exact enumeration results for N ¼ 10 are also shown (continuous line).
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Our estimates suggest that extremal optimization was faster by a factor of at least 2, in comparison with
simulated annealing. However, we found that extremal optimization is also strongly affected by the increasing
system size, and for N460 we could not get any good statistics in reasonable computational time.

The results plotted in Fig. 5 support the picture of the expected geometrical phase transition. As the system
size increases the rðqÞ curves show a more and more sharper trend in the vicinity of q ¼ 1

2
. Also, the DrðqÞ

standard deviation exhibits a non-trivial peak for q4q0 ¼
1
2
, and gets closer to q0 as the system size increases.

By extrapolating the obtained results as a function of N for q ¼ 0:1, q ¼ 0:3 and q ¼ 0:7, one can show that
r! 0 as a power-law for q ¼ 0:1 and q ¼ 0:3, and r! 1 for q ¼ 0:7 (Fig. 6). This proves the existence of the
presumed phases.
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Dropping the symmetry requirement for Jij introduces an extra frustration in the system. While for
symmetric Jij only subsets with more than two elements can be frustrated, in the asymmetric case subsets of
two elements can become already frustrated. It is interesting to note, however, that the nature of the observed
transition is not affected by dropping this symmetry requirement and again, the same geometrical phase
transition should appear in q0 ¼

1
2
. Up to N ¼ 10 we computed the rðqÞ curves by exact enumeration and for

N ¼ 20 and 30 we used the extremal optimization method. No important deviations from the symmetric case
were found.
6. A more general case

Next, we briefly sketch our results for a more general case, where the Si factors are also randomly
distributed.

Considering a simple uniform distribution of the Si values on the ½0; 1� interval and Zij distributed according
to the (4) distribution, we performed a simulated annealing optimization. Since the variance of Jij scales again
like N�2, the transition is naturally expected. For N ¼ 10; 20 and 40 results supporting this geometrical phase
transition are plotted in Fig. 7.
7. Discussions

The observed phase transition is interesting also from the viewpoint of the much discussed social
percolation [17], where the emergence of a giant cluster is observed in many social phenomena. Our simple
model suggests that large sociological systems can show tendencies to percolation-like behavior due to the
discussed coalition formation or cluster-structure optimization phenomena. If a globally coupled large system
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of the order parameter, both as a function of q.
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has more propensities pointing towards collaboration than conflict, usually a single coalition satisfies
optimally the apparently conflicting interactions. On the contrary, when there are more conflicting
propensities than collaborative ones, the society will fragment in large number of coalitions, and each
element will isolate itself from the others. As expected, this percolation-like behavior is rather smooth for
small system sizes. The observed percolation-like behavior is also quite stable relative to the choice of the Zij

propensities and Si weight-factors.
It is also important to mention that according to the considered model the most unpredictable societies are

ones where the number of positive and negative links are roughly the same. From our numerical results one
can see that in this case Dr is big, and the value of r is changing strongly with small variations of q. First, this
means that the system is very sensitive to the explicit realization of the Jij values. Secondly, as seen in Fig. 4 in
this region many ground-state configurations with different r values might co-exist, all of them having the
same minimal K cost-function value. Third, a small difference in the measured q value can result in large
differences for the expected r values. In these societies statistical methods are useless for predicting the optimal
coalition structure.

Predicting the ground-state of large systems with small q values is also difficult. As seen in Fig. 4a the
number of optimal coalition structures increases sharply with the system size and peaks for smaller and
smaller q values. In our model all these ground-states are equally probable and this high degeneration level
makes such a statistical approach ineffective.

The fact that in the ground-state many equally-optimum configurations with quite different maximal cluster
sizes are possible might also lead to interesting implications. The existence of some ‘‘mixed’’ states might well
be possible, where the system behavior can be described not from a clear coalition structure, but rather from a
superposition of many coalition structures.

The model considered by us is of course a very simple one, capturing only a few parameters that are
important in understanding social coalition formation. In our model we also neglected the dynamics of the
system, and presumed that the system will tend towards the optimal configurations. The system is, however,
frustrated, and many configurations with local minimum exist. During its dynamics, the system might get
trapped in a local minimum, and the formed coalitions might be the one corresponding to this case, rather
than the global optimum case. For implementing a realistic dynamics for coalition formation one should also
take in to account that coalitions are not instantaneously and simultaneously formed. Once an agent is
assigned to a coalition, it can (and probably will) change its propensities toward other agents. Agent will
adjust their propensities according to the already formed coalitions and this feedback presumably reduces the
frustration in the system.

All the above limitations of the present model might explain why our results are somehow strange and in
disagreement with our everyday experiences regarding the sizes of the coalitions. In real, large sociological
systems, we usually observe the presence of several large coalitions with more or less similar sizes. In contrast
with this, our model suggests two extreme coalition structure type. We believe that the applicability of our
model is limited mainly for the case when an external agent wants to realize an optimal clusterization in the
system by taking into account the declared and a priori fixed propensities between the agents and minimizing
the (2) cost-function.

In conclusion, in the present study we presented evidences for a geometrical phase transition in the ground-
state of an optimal clusterization (or coalition formation) model. This has a cost function similar to the
infinite-range, p ¼ N, Potts glass where the variance of the bonds scale as N�2. For finite system sizes three
different methods were used to approach this NP hard optimization problem, all of them supporting the
percolation-like behavior of the largest cluster size as a function of the positive links in the system.
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Appendix A. Number of configurations

A.1. Combinatorial formula

In a given coalition structure of N actors there are kj coalitions of j members each, j ¼ 1; . . .N, such that

N ¼
XN

j¼1

jkj . (A.1)

While one can place the actors N! number of ways on a coalition map, permutations of actors within a
coalition, and permutations of coalitions having the same number of members do not produce different
coalition configurations. Hence for a given fkjg coalition structure there are

CðN; fkjgÞ ¼
N!

ð1!Þk1 ð2!Þk2 . . . ðN!ÞkN k1! k2! . . . kN !
(A.2)

configurations. The sought total number of configurations is then given by

CðNÞ ¼
X0

CðN; fkjgÞ , (A.3)

where
P0 means summation over all kjX0 integers with the constraint (A.1).

Formula (A.3) with (A.2), however explicit, is not very practical for computations, because the factorials
soon cause overflow, and checking the condition (A.1) also requires extra resources.

A.2. Recursion

In order to compute the total number of configurations we consider the number of configurations CðN; kÞ
with only the number of coalitions

k ¼
XN

j¼1

kj , (A.4)

fixed. Hence the total is

CðNÞ ¼
XN

k¼1

CðN; kÞ . (A.5)

A coalition configuration with N actors can be obtained from the one with N � 1 by either putting the Nth
actor into a separate coalition, with him as the only member, thereby augmenting the number of coalitions by
1, or, making him join any of the k existing coalitions. Hence one obtains

CðN; kÞ ¼ kCðN � 1; kÞ þ CðN � 1; k � 1Þ , (A.6)

k ¼ 1; . . . ;N, with the convention CðN; 0Þ ¼ CðN;N þ 1Þ ¼ 0. Note that CðN; 1Þ ¼ CðN;NÞ ¼ 1. Having
computed the CðN ; kÞs, we get the total number of configurations from (A.5).

A.3. Generating function

Out of pure curiosity, we study here the question whether the terms CðN; kÞ can be obtained from a
generating function. For that purpose we first note that the recursion (A.6) is similar to the rule whereby a
Pascal triangle is generated, with the difference that we have here an extra k factor.

For a start we can consider

FBðN;xÞ ¼ ð1þ xÞN ¼
XN

k¼0

N

k

� �
xk (A.7)
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as the generating function for the binomial coefficients. If we knew only the Pascal recursion rule for the
coefficients, we would get

FBðN;xÞ ¼ ð1þ xÞFBðN � 1;xÞ , (A.8)

whence, with FBð0;xÞ ¼ 1, the explicit formula follows.
Let us turn to the generating function for coalition configurations

F ðN;xÞ ¼
XN

k¼1

CðN; kÞxk . (A.9)

Taking into account the coefficient k in the recursion (A.6), we should modify (A.8) accordingly

F ðN;xÞ ¼ x
d

dx
þ x

� �
F ðN � 1;xÞ . (A.10)

Note that the prefactor is the sum of non-commuting terms. Hence, given F ð1; xÞ ¼ x, we get

F ðN;xÞ ¼ x
d

dx
þ x

� �N

1 . (A.11)

The total number of configurations is then obtained as

CðNÞ ¼ F ðN; 1Þ . (A.12)

A few low order polynomials are

F ð1;xÞ ¼ x , ðA:13Þ

F ð2;xÞ ¼ xþ x2 , ðA:14Þ

F ð3;xÞ ¼ xþ 3x2 þ x3 , ðA:15Þ

F ð4;xÞ ¼ xþ 7x2 þ 6x3 þ x4 , ðA:16Þ

F ð5;xÞ ¼ xþ 15x2 þ 25x3 þ 10x4 þ x5 , ðA:17Þ

and the corresponding total number of configurations are CðNÞ ¼ 1; 2; 5; 15; 52, respectively.
A.4. Comparison with the Potts model

The reasoning above can be used for computing configurations in the p ¼ N, infinite range Potts model. A
Potts cluster is defined now as the ensemble of spins pointing in the same Potts direction. The number of
configurations with k clusters can be simply obtained as

CPottsðN; kÞ ¼
N!

ðN � kÞ!
CðN; kÞ , (A.18)

where CðN; kÞ was introduced in A.2 as the number of configurations with k coalitions. Indeed, one coalition
selected as a cluster can point into any of the N different Potts directions, another coalition, selected second,
can point into any save the first, and so on, the last picked out of the k coalitions has a Potts degeneracy of
ðN � k þ 1Þ. Thus the known total number of Potts configurations writes, cf. (A.3), as

CPottsðNÞ ¼ NN ¼
X0 N!

ðN � kÞ!
CðN ; fkjgÞ . (A.19)

The above formulas demonstrate that the number of configurations in the coalition formation model is
significantly less than those in the Potts system.
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